Optical embodiments of Rabi splitting based in photonic integrated waveguide-coupled resonators

Author:

Moss David1

Affiliation:

1. Swinburne University of Technology

Abstract

Abstract Realizing optical analogues of quantum phenomena in atomic, molecular, or condensed matter physics has underpinned a range of photonic technologies. Rabi splitting is a quantum phenomenon induced by a strong interaction between two quantum states, and its optical analogues are of fundamental importance for the manipulation of light-matter interactions with wide applications in optoelectronics and nonlinear optics. Here, we propose and theoretically investigate purely optical analogues of Rabi splitting in integrated waveguide-coupled resonators formed by two Sagnac interferometers. By tailoring the coherent mode interference, the spectral response of the devices is engineered to achieve optical analogues of Rabi splitting with anti-crossing behavior in the resonances. Transitions between the Lorentzian, Fano, and Rabi splitting spectral lineshapes are achieved by simply changing the phase shift along the waveguide connecting the two Sagnac interferometers, revealing interesting physical insights about the evolution of different optical analogues of quantum phenomena. The impact of the device structural parameters is also analyzed to facilitate device design and optimization. These results suggest a new way for realizing optical analogues of Rabi splitting based on integrated waveguide-coupled resonators, paving the way for many potential applications that manipulate light-matter interactions in the strong coupling regime.

Publisher

Research Square Platform LLC

Reference164 articles.

1. From a quantum-electrodynamical light–matter description to novel spectroscopies,";Ruggenthaler M;Nature Reviews Chemistry

2. "Strong coupling in a single quantum dot–semiconductor microcavity system;Reithmaier JP;Nature

3. Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit;Santhosh K;Nature Communications

4. "Observation of Rabi dynamics with a short-wavelength free-electron laser,";Nandi S;Nature,2022

5. P. R. Berman, Cavity quantum electrodynamics. United States: Academic Press, 1994.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3