P-doped NiCo LDH loaded three-dimensional substrate as an efficient oxygen evolution electrocatalyst

Author:

Zhang Jingchun1,Weatherspoon Erin2,Alsubaie Abdullah Saad3,Burcar Ethan2,DeMerle Ashley2,El-Bahy Zeinhom M.4,Wang Zhe2

Affiliation:

1. University of California at Davis

2. Oakland University

3. Taif University

4. Al-Azhar University

Abstract

Abstract

Developing new clean energy sources and equipment to replace fossil fuel usage is an urgent global priority. However, one such essential method, electrolytic water hydrogen production's characteristics of slow kinetics and high potential barrier of the anodic oxygen evolution reaction (OER) hinder the large-scale application of such an approach. While precious metal catalysts have shown excellent catalytic activity, their high cost limits their feasibility for large-scale implementation. As a result, the development of stable and low-cost oxygen evolution reaction catalysts is critical. Transition metal layered hydroxides (TM LDHs) have been widely studied as a promising candidate for water electrolysis catalysis for their unique two-dimensional layered structure, high specific surface area, great electron exchangeability, and densely distributed active sites. Here in this research, we have synthesized nickel cobalt phosphide LDH (P-NiCo-LDH) that maximizes the utilization of foam nickel as the conductive substrate while protecting the phosphated LDH. This work proposes a practical approach for developing LDH as an OER catalyst and contributes to the ongoing efforts to advance sustainable clean energy sources.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3