The response of zooplankton network indicators to winter water warming using shallow artificial reservoirs as model case study

Author:

Goździejewska Anna Maria1,Kruk Marek1

Affiliation:

1. University of Warmia and Mazury in Olsztyn

Abstract

Abstract To predict the most likely scenarios, the consequences of the rise in water surface temperature have been studied using various methods. We tested the hypothesis that winter water warming significantly alters the importance and nature of the relationships in zooplankton communities in shallow reservoirs. These relationships were investigated using network graph analysis for three thermal variants: warm winters (WW), moderate winters (MW) and cold winters (CW). The CW network was the most cohesive and was controlled by eutrophic Rotifera and Copepoda, with a corresponding number of positive and negative interspecific relationships. An increase in water temperature in winter led to a decrease in the centrality of MW and WW networks, and an increase in the importance of species that communicated with the highest number of species in the subnetworks. The WW network was the least cohesive, controlled by psammophilous and phytophilous rotifers, and littoral cladocerans. Adult copepods were not identified in the network and the importance of antagonistic relationships decreased, indicating that the WW network structure was weak and unstable. This study can serve as a model for generalisations of zooplankton community response to the disappearance of long winter periods of low temperatures, as predicted in global climate change projections.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3