Genotyping by Sequencing for Estimating Relative Abundances of Diatom Taxa in Mock Communities

Author:

Çiftçi Ozan1ORCID,Wagemaker Cornelis A. M.2,Mertens Adrienne3,Bodegom Peter van4,Pirovano Walter5,Gravendeel Barbara2

Affiliation:

1. Universiteit Leiden

2. Radboud Universiteit

3. Diatomella

4. Leiden University: Universiteit Leiden

5. BaseClear BV

Abstract

Abstract Background: Diatoms are present in all waters and are highly sensitive to pollution gradients. Therefore, they are ideal bioindicators for water quality assessment. Current indices used in these applications are based on identifying diatom species and counting their abundances using traditional light microscopy. Several molecular techniques have been developed to help automate different steps of this process, but obtaining reliable estimates of diatom community composition and species abundance remains challenging. Results: Here, we evaluated a recently developed quantification method based on Genotyping by Sequencing (GBS) for the first time in diatoms to estimate the relative abundances within a species complex. For this purpose, a reference database comprised of thousands of gDNA clusters was generated from the monoclonal cultures of the diatom Nitzschia palea. The sequencing reads from calibration and mock samples were mapped against this database for parallel quantification. We sequenced 25 mock diatom communities containing up to five taxa per sample in different abundances. Taxon abundances in these communities were also quantified by a diatom expert using manual counting of cells on light microscopic slides. The relative abundances of strains across mock samples were over- or under-estimated by the manual counting method, and a majority of mock samples had stronger correlations using GBS. Moreover, one previously recognized putative hybrid had the largest number of false positive detections demonstrating the limitation of the manual counting method when morphologically similar and/or phylogenetic close taxa are analyzed.Conclusions: Our results suggest that GBS is a reliable method to estimate the relative abundances of the N. palea taxa analyzed in this study and outperformed traditional light microscopy in terms of accuracy. Since GBS is scalable in species numbers within samples, unlike currently available quantitative molecular methods, this is a significant step forward in developing automated quantification of diatom communities for freshwater quality assessments.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3