Affiliation:
1. Reggio Emilia Local Agency - IRCCS Advanced Technologies and Care Models in Oncology: Azienda Unita Sanitaria Locale - IRCCS Tecnologie Avanzate e Modelli Assistenziali in Oncologia di Reggio Emilia
2. Laboratory of Applied Nuclear Energy, Pavia
3. TrisKem International
4. Brescia University
5. INFN: Istituto Nazionale di Fisica Nucleare
6. University of Padova: Universita degli Studi di Padova
Abstract
Abstract
Background:
Silver-111 is a promising β−-emitting radioisotope with ideal characteristics for targeted radionuclide therapy and associated single photon emission tomography imaging. Its decay properties closely resemble the clinically established lutetium-177, making it an attractive candidate for therapeutic applications. In addition, the clinical value of silver-111 is further enhanced by the existence of the positron-emitting counterpart silver-103, thus imparting a truly theranostic potential to this element. A so-fitting matching pair could potentially overcome the current limitations associated with the forced use of chemically different isotopes as imaging surrogates of lutetium-177, leading to more accurate and efficient diagnosis and treatment. However, the diffusion of silver-111 in vivo applications has been hindered so far by the challenges related to its production and radiochemical separation from the target material. To address these issues, this study aims to implement a chromatographic methodology for the purification of reactor-produced silver-111. The ultimate goal is to achieve a ready-to-use formulation for the direct radiolabeling of tumour-seeking biomolecules.
Results:
A two-step sequence chromatographic process was validated for cold Ag-Pd separation and then translated to the radioactive counterpart. Silver-111 was produced via the 110Pd(n,γ)111Pd nuclear reaction on the palladium target and the subsequent β−-decay of palladium-111. Silver-111 was chemically separated from the metallic target via the implemented chromatographic process by using commercially available LN and TK200 resins. The effectiveness of the separations was assessed by inductively coupled plasma optical emission spectroscopy and γ-spectrometry, respectively, and the Ag+ retrieval was afforded in pure water. Recovery of silver-111 was > 90% with a radionuclidic purity > 99%.
Conclusions:
The developed separation method was suitable to obtain silver-111 with high molar activity in a ready-to-use water-based formulation that can be directly employed for the labeling of radiotracers. By successfully establishing a robust and efficient production and purification method for silver-111, this research paves the way for its wider application in targeted radionuclide therapy and precision imaging.
Publisher
Research Square Platform LLC