Federated Learning used for predicting outcomes in SARS-COV-2 patients

Author:

Flores Mona1ORCID,Dayan Ittai2,Roth Holger1ORCID,Zhong Aoxiao3,Harouni Ahmed1,Gentili Amilcare4,Abidin Anas1,Liu Andrew5,Costa Anthony6,Wood Bradford7,Tsai Chien-Sung8,Wang Chih-Hung9ORCID,Hsu Chun-Nan10ORCID,Lee CK1,Ruan Colleen1,Xu Daguang1,Wu Dufan3,Huang Eddie1,Kitamura Felipe11ORCID,Lacey Griffin1,Corradi Gustavo César de Antônio12,Shin Hao-Hsin13,Obinata Hirofumi14,Ren Hui3,Crane Jason15,Tetreault Jesse1,Guan Jiahui1,Garrett John16ORCID,Park Jung Gil17ORCID,Dreyer Keith18,Juluru Krishna13ORCID,Kersten Kristopher1,Rockenbach Marcio Aloisio Bezerra Cavalcanti18ORCID,Linguraru Marius19,Haider Masoom20,AbdelMaseeh Meena21,Rieke Nicola1,Damasceno Pablo15,Silva Pedro Mario Cruz e1,Wang Pochuan22ORCID,Xu Sheng23,Kawano Shuichi14,Sriswa Sira24ORCID,Park Soo Young25,Grist Thomas26,Buch Varun18,Jantarabenjakul Watsamon27,Wang Weichung28,Tak Won Young25,Li Xiang3,Lin Xihong29ORCID,Kwon Fred6,Gilbert Fiona30ORCID,Kaggie Josh31,Li Quanzheng3,Quraini Abood1,Feng Andrew1,Priest Andrew32ORCID,Turkbey Baris33ORCID,Glicksberg Benjamin34ORCID,Bizzo Bernardo18ORCID,Kim Byung Seok35,Tor-Diez Carlos36ORCID,Lee Chia-Cheng37,Hsu Chia-Jung38,Lin Chin39,Lai Chiu-Ling40,Hess Christopher41,Compas Colin1,Bhatia Deepi1,Oermann Eric42,Leibovitz Evan43,Sasaki Hisashi14,Mori Hitoshi14,Yang Isaac1,Sohn Jae Ho15,Murthy Krishna Nand Keshava13,Fu Li-Chen44,Mendonça Matheus Ribeiro Furtado de11ORCID,Fralick Mike45,Kang Min Kyu46,Adil Mohammad1,Gangai Natalie13,Vateekul Peerapon47ORCID,Elnajjar Pierre13,Hickman Sarah31,Majumdar Sharmila15,McLeod Shelley48,Reed Sheridan23,Graf Stefan30ORCID,Harmon Stephanie49ORCID,Kodama Tatsuya14,Puthanakit Thanyawee50,Mazzulli Tony51,Lavor Vitor de Lima11,Rakvongthai Yothin52,Lee Yu Rim25,Wen Yuhong1

Affiliation:

1. NVIDIA

2. MGH Radiology and Harvard Medical School

3. Center for Advanced Medical Computing and Analysis, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA

4. San Diego VA Health Care System, San Diego

5. andrliu@nvidia.com

6. Mount Sinai Health System

7. Radiology & Imaging Sciences / Clinical Center, National Institutes of Health

8. Division of Cardiovascular Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, R.O.C.

9. Tri-Service General Hospital, National Defense Medical Center

10. Center for Research in Biological Systems, University of California, San Diego

11. Diagnósticos da América SA (Dasa)

12. GUSTAVOCORRADI@gmail.com

13. Memorial Sloan Kettering Cancer Center

14. Self-Defense Forces Central Hospital

15. Center for Intelligent Imaging, Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA.

16. The University of Wisconsin-Madison School of Medicine and Public Health

17. Yeungnam University College of Medicine

18. Center for Clinical Data Science, Massachusetts General Brigham, Boston, MA

19. Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital and School of Medicine and Health Sciences, George Washington University, Washington, DC

20. Joint Dept. of Medical Imaging, Sinai Health System, University of Toronto, Toronto, Canada and Lunenfeld-Tanenbaum Research Institute, Toronto, Canada

21. Lunenfeld-Tanenbaum Research Institute, Toronto, Canada

22. MeDA Lab and Institute of Applied Mathematical Sciences, National Taiwan University, Taipei, Taiwan

23. Center for Interventional Oncology, National Institutes of Health, Bethesda, MD, USA

24. Chulalongkorn University

25. Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea

26. University of Wisconsin-Madison

27. Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand and Thai Red Cross Emerging Infectious Diseases Clinical Center, King Chulalongkorn Memorial Hospital, Bang

28. National Taiwan University

29. Harvard T.H. Chan School of Public Health

30. University of Cambridge

31. Department of Radiology, NIHR Cambridge Biomedical Resource Centre, University of Cambridge

32. Department of Radiology, NIHR Cambridge Biomedical Resource Centre, Cambridge University Hospital

33. National Institutes of Health

34. Icahn School of Medicine at Mount Sinai

35. Department of Internal Medicine, Catholic University of Daegu School of Medicine, Daegu, South Korea

36. Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital , Washington, DC

37. Planning and Management Office, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, R.O.C. and Division of Colorectal Surgery, Department of Surgery, Tri-Service General H

38. Planning and Management Office, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, R.O.C.

39. School of Medicine, National Defense Medical Center, Taipei, Taiwan, R.O.C. and School of Public Health, National Defense Medical Center, Taipei, Taiwan, R.O.C. and Graduate Institute of Life Scienc

40. Medical Review and Pharmaceutical Benefits Division, National Health Insurance Administration, Taipei. Taiwan

41. University of California, San Francisco

42. NYU Langone

43. The Center for Clinical Data Science, Mass General Brigham.

44. MOST/NTU All Vista Healthcare Center, Center for Artificial Intelligence and Advanced Robotics, National Taiwan University, Taipei, Taiwan

45. Division of General Internal Medicine and Geriatrics (Fralick), Sinai Health System, Toronto, Canada

46. Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, South Korea

47. Department of Computer Engineering, Faculty of Engineering, Chulalongkorn University

48. Schwartz/Reisman Emergency Medicine Institute, Sinai Health, Toronto, ON, Canada and Department of Family and Community Medicine, University of Toronto, Toronto, ON, Canada

49. National Cancer Institute

50. Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Center of Excellence in Pediatric Infectious Diseases and Vaccine, Chulalongkorn University

51. Department of Microbiology, Sinai Health/University Health Network, Toronto, Canada and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto. Canada Public Health Ontar

52. Chulalongkorn University Biomedical Imaging Group and Division of Nuclear Medicine, Department of Radiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand

Abstract

Abstract ‘Federated Learning’ (FL) is a method to train Artificial Intelligence (AI) models with data from multiple sources while maintaining anonymity of the data thus removing many barriers to data sharing. During the SARS-COV-2 pandemic, 20 institutes collaborated on a healthcare FL study to predict future oxygen requirements of infected patients using inputs of vital signs, laboratory data, and chest x-rays, constituting the “EXAM” (EMR CXR AI Model) model. EXAM achieved an average Area Under the Curve (AUC) of over 0.92, an average improvement of 16%, and a 38% increase in generalisability over local models. The FL paradigm was successfully applied to facilitate a rapid data science collaboration without data exchange, resulting in a model that generalised across heterogeneous, unharmonized datasets. This provided the broader healthcare community with a validated model to respond to COVID-19 challenges, as well as set the stage for broader use of FL in healthcare.

Publisher

Research Square Platform LLC

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3