ThyroNet-X4 Genesis: An Advanced Deep Learning Model for Auxiliary Diagnosis of Thyroid Nodules' Malignancy

Author:

Wang Xiaoxue1,Niu Yupeng2,Liu Hongli1,Tian Fa2,Zhang Qiang1,Wang Yimeng1,Wang Yeju1,Li Yijia1

Affiliation:

1. HanZhong Central Hospital

2. Sichuan Agricultural University

Abstract

Abstract

Thyroid nodules are common endocrine disorders, and the discrimination between benign and malignant nodules is crucial for treatment decisions. Traditional ultrasound diagnosis relies on the experience of physicians, which may pose risks of misdiagnosis. In this study, we propose a novel deep learning model, ThyroNet-X4 Genesis, for the automatic classification of thyroid nodules' malignancy. This model is based on the ResNet module, which optimizes computational efficiency and enhances feature extraction capabilities by introducing grouped convolution and increasing the convolution kernel size, thus extracting features and classifying nodules in ultrasound images. We obtained data from publicly available medical imaging databases for internal training and validation and used ultrasound images collected from HanZhong Central Hospital as an external validation set to evaluate the model's generalization ability and practical application value.ThyroNet-X4 Genesis achieved training and validation accuracies of 85.55% and 71.70%, respectively, on the internal validation set, with a testing accuracy of 67.02% on the external validation set, outperforming other mainstream comparative models, indicating its good performance in actual clinical applications. The development of this model showcases the potential of deep learning in thyroid imaging analysis, providing valuable references for future development of high-performance medical diagnostic models.

Publisher

Research Square Platform LLC

Reference22 articles.

1. Guth S Theune U Aberle J Galach A & Bamberger CM. Very high prevalence of thyroid nodules detected by high frequency (13 MHz) ultrasound examination. European Journal of Clinical Investigation 200939699–706. (10.1111/j.1365-2362.2009.02162.x)

2. Grussendorf M Ruschenburg I & Brabant G. Malignancy rates in thyroid nodules: a long-term cohort study of 17,592 patients. European Thyroid Journal 202211 e220027. (10.1530/ETJ-22-0027)

3. Li Y, Teng D, Ba J, et al. Efficacy and Safety of Long-Term Universal Salt Iodization on Thyroid Disorders: Epidemiological Evidence from 31 Provinces of Mainland China[ J]. Thyroid, 2020,30(4):568–579. DOI: 10. 1089 / thy. 2019. 0067.

4. Durante C, Grani G, Lamartina L, et al. The Diagnosis and management of thyroid nodules: a review[ J]. JAMA, 2018,319 (9):914–924. DOI: 10. 1001 / jama. 2018. 0898.

5. American Association of Clinical Endocrinologists, American College of Endocrinology, and Associazione Medici Endocrinologi Medical Guidelines for Clinical Practice for the Diagnosis and Management of Thyroid Nodules—2016 Update [ J];Gharib H;Endocr Pract,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3