Current observations on shifts in malaria vector biting behavior and changing vulnerability to malaria transmission in contrasting ecosystems in Western Kenya

Author:

Nzioki Irene1,Machani Maxwell G.2,Onyango Shirley A.1,Kabui Kevin K.1,Githeko Andrew K.2,Ochomo Eric2,Yan Guiyun3,Afrane Yaw A.4

Affiliation:

1. Kenyatta University

2. Kenya Medical Research Institute

3. University of California

4. University of Ghana Medical School, University of Ghana

Abstract

Abstract Background: Designing, implementing, and upscaling effective malaria vector control strategies necessitates understanding of when and where transmission occurs. This study assessed the biting patterns of potentially infectious malaria vectors at various hours, locations, and human behavior in different ecological settings in western Kenya. Methods: Hourly indoor and outdoor catches of human-biting mosquitoes were sampled from 1900 to 0700 hours for four consecutive nights in four houses per village using human landing collection method. The nocturnal biting activities of each Anopheles species were expressed as the mean number of mosquitoes landing per person per hour. The human behavior study was conducted via observations and questionnaire surveys. Species within Anopheles gambiae and Anopheles funestus complexes were differentiated by polymerase chain reaction (PCR) and the presence of Plasmodium falciparumcircumsporozoite proteins (CSP) determined by enzyme-linked immunosorbent assay (ELISA). Results: Altogether, a total of 2,037 adult female Anophelines were collected comprising of An. funestus s.l. (76.7%), An.gambiae s.l.(22.8%) and Anopheles coustani (0.5%). Overall, Anopheles funestus was the predominant species collected in Ahero (96.7%) while An. gambiae s.l was dominant in Kisian (86.6%) and Kimaeti (100%) collections. PCR results revealed that An. arabiensis constituted 80.5% and 79% of the An.gambiae s.l samples analysed from Ahero and Kisian respectively. An. gambiae s.s (hereafter An.gambiae)(98.1%) was the dominant species collected in Kimaeti. All the An. funestus s.l samples analysed belonged to An. funestus s.s ( hereafter An. funestus). Indoor biting densities of Anopheles gambiae and An. funestus exceeded the outdoor biting densities in all sites. The peak biting occurred early morning between 0430-0630 hours in the lowlands for An. funestus both indoors and outdoors. In the highlands (Kimaeti), the peak biting of An.gambiae occurred between 0100-0200 hours indoors. Over 50% of the study population stayed outdoors from 1800 to 2200 hours and woke up at 0500 hours coinciding with the times highest numbers of vectors were collected. The sporozoite rate was higher in vectors collected outdoors, with An. funestus being the main malaria vector in the lowlands and An. gambiaein the highland. Conclusion: The study shows heterogeneity of Anophelines distribution, high outdoor malaria transmission, and peak biting activity by An. funestus (early morning ) when humans are not protected by bed nets in the lowland sites. Additional vector control efforts targeting the behaviors of these vectors i.e using non-pyrethroids-based indoor residual spraying and spatial repellents outdoors are needed.

Publisher

Research Square Platform LLC

Reference56 articles.

1. WHO, 2020. World Malaria Report 2020: 20 years of global progress and challenges. [Internet]. Available from: https://www.who.int/publications/i/item/9789240040496

2. Zhou G, Afrane YA, Vardo-Zalik AM, Atieli H, Zhong D, Wamae P, et al. Changing patterns of malaria epidemiology between 2002 and 2010 in Western Kenya: the fall and rise of malaria. PloS one. Public Library of Science San Francisco, USA; 2011;6:e20318.

3. Insecticide Resistance in African Anopheles Mosquitoes: A Worsening Situation that Needs Urgent Action to Maintain Malaria Control;Ranson H;Trends Parasitol.,2016

4. WHO,2022. World malaria report 2022 [Internet]. [cited 2023 Jan 20]. Available from: https://www.who.int/publications/i/item/9789240064898

5. Killeen GF, Chitnis N. Potential causes and consequences of behavioural resilience and resistance in malaria vector populations: a mathematical modelling analysis. Malar J [Internet]. 2014 [cited 2023 Jan 20];13:97. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3995604/

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3