Circumscribed ferroelectricity by phonon-decoupled oxygen tetrahedra in brownmillerite oxides

Author:

Choi Si-Young1ORCID,Jang Jinhyuk2ORCID,Jin Yeongrok3,Park Heung-Sik4,Kim Jaegyu4,Kang Kyeong Tae5,Go Kyoung-June2ORCID,Kim Gi-Yeop1ORCID,Hong Seungbum6ORCID,Lee Jun Hee7ORCID,lee Daesu2ORCID,Han Myung Geun8ORCID,Zhu Yimei8ORCID,Cheong Sang-Wook9ORCID,Yang Chan-Ho6ORCID,Choi Woo Seok10ORCID,Lee Jaekwang3ORCID

Affiliation:

1. Pohang University of Science and Technology (POSTECH)

2. Pohang University of Science and Technology

3. Pusan National University

4. Korea Advanced Institute of Science and Technology

5. Kyungpook National University

6. KAIST

7. Ulsan National Institute of Science and Technology

8. Brookhaven National Laboratory

9. Rutgers Center for Emergent Materials and Department of Physics and Astronomy

10. Sungkyunkwan University

Abstract

Abstract Ultimate scaling limit in ferroelectric switching has been attracting broad attention in the fields of materials science and nanoelectronics1,2. Despite the immense efforts to scale down ferroelectric features, however, only few materials have been shown to exhibit ferroelectricity at the unit cell level3,4. Here, we report a controllable unit cell-scale domain in the brownmillerite oxides consisting of alternating octahedral/tetrahedral unit cells. By combining atomic-scale imaging and in-situ transmission electron microscopy, we directly probed unit cell-wide ferroelectricity patterned by neutral unit cell-wide walls and its switchable characteristics. The first-principles phonon calculations confirm that the phonon modes related with oxygen-octahedra are fully decoupled from those with oxygen-tetrahedra in the brownmillerite oxides, and such localized oxygen-tetrahedral phonons stabilize the unit cell-wide domain. Unit cell-wide ferroelectricity in our study provides unprecedented scaling limit of ferroelectric thin films for designing high-density memory devices at the quantum limit.

Publisher

Research Square Platform LLC

Reference49 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3