Digital image analysis and machine learning-assisted prediction of neoadjuvant chemotherapy response in triple-negative breast cancer

Author:

Fisher Timothy B.1,Saini Geetanjali2,TS Rekha3,Krishnamurthy Jayashree3,Bhattarai Shristi2,Callagy Grace4,Webber Mark4,Janssen Emiel A.M.5,Kong Jun1,Aneja Ritu2

Affiliation:

1. Georgia State University

2. University of Alabama at Birmingham

3. JSSAHER (JSS Academy of Higher Education and Research) Medical College

4. University of Galway

5. Stavanger University Hospital

Abstract

Abstract Background Pathological complete response (pCR) is associated with favorable prognosis in patients with triple-negative breast cancer (TNBC). However, only 30–40% of TNBC patients treated with neoadjuvant chemotherapy (NAC) show pCR, while the remaining 60–70% show residual disease (RD). The role of the tumor microenvironment (TME) in NAC response in patients with TNBC remains unclear. In this study, we developed a machine learning-based two-step pipeline to distinguish between various histological components in hematoxylin and eosin (H&E)-stained whole slide images (WSIs) of TNBC tissue biopsies and to identify histological features that can predict NAC response. Methods H&E-stained WSIs of treatment-naïve biopsies from 85 patients (51 with pCR and 34 with RD) were separated through a stratified 8-fold cross validation strategy for the first step and leave one out cross validation strategy for the second step. A tile-level histology label prediction pipeline and four machine learning classifiers were used to analyze 468,043 tiles of WSIs. The best-trained classifier used 55 texture features from each tile to produce a probability profile during testing. The predicted histology classes were used to generate a histology classification map of the spatial distributions of different tissue regions. A patient-level NAC response prediction pipeline was trained with features derived from paired histology classification maps. The top graph-based features capturing the relevant spatial information across the different histological classes were provided to the radial basis function kernel support vector machine (rbfSVM) classifier for NAC treatment response prediction. Results The tile-level prediction pipeline achieved 86.72% accuracy for histology class classification, while the patient-level pipeline achieved 83.53% NAC response (pCR vs. RD) prediction accuracy. The histological class pairs with the strongest NAC response predictive ability were tumor and tumor tumor-infiltrating lymphocytes for pCR and microvessel density and polyploid giant cancer cells for RD. Conclusion Our machine learning pipeline can robustly identify clinically relevant histological classes that predict NAC response in TNBC patients and may help guide patient selection for NAC treatment.

Publisher

Research Square Platform LLC

Reference83 articles.

1. Genome and transcriptome sequencing in prospective metastatic triple-negative breast cancer uncovers therapeutic vulnerabilities;Craig DW;Mol Cancer Ther,2013

2. Howlader N NA, Krapcho M, Miller D, Brest A, Yu M, Ruhl J, Tatalovich Z, Mariotto A, Lewis DR, Chen HS, Feuer EJ, Cronin KA (eds. SEER Cancer Statistics Review. 1975–2017.

3. Understanding the biology of triple-negative breast cancer;Criscitiello C;Ann Oncol,2012

4. Triple-negative breast cancer: clinical features and patterns of recurrence;Dent R;Clin Cancer Res,2007

5. Response to Neoadjuvant Therapy and Long-Term Survival in Patients With Triple-Negative Breast Cancer;Liedtke C;Journal of Clinical Oncology,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3