Catalytic Activity for Dye Degradation and Characterization of Silver/Silver Oxide Nanoparticles Green Synthesized by Aqueous Leaves Extract of Phoenix Dactylifera L.

Author:

Laouini Salah1,Bouafia Abderrhmane1,Tedjani Mohammed1

Affiliation:

1. Centre Universitaire d'El Oued

Abstract

Abstract In this study, green synthesis of silver /silver oxide nanoparticles was successfully prepared from Phoenix Dactylifera L aqueous leaves extract. The effect of different volume ratio (% v/v) (Plant extract / Precursor) on the nanoparticles silver /silver oxide nanoparticles formation, optical properties, and catalytic activity for dye degradation was studied. The obtained Ag/Ag2O nanoparticles were characterized using various techniques, such as UV-Visible, FT-IR, XRD, SEM for this purpose. The UV-Vis spectrum shows the absorption at 430 nm associated with Ag/Ag2O NPs. The optical bandgap values were found to be in the range of 3.22 to 4.47 eV for the direct bandgap and 3.73 to 5.23 eV for the indirect bandgap. The functional groups present in plant extracts were studied by FTIR. XRD confirmed the crystalline nature of Ag / Ag2O NP, and its average particle size was between 28.66-39.40 nm. SEM showed that the green synthesized silver/silver oxide nanoparticles have a spherical shape. The purpose of this study, it highlights the high catalytic activity for dye degradation of Ag/Ag2O NPs green synthesized. As a result, the use of Phoenix Dactylifera L aqueous leaves extract offers a cost-effective and eco-friendly method.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3