Integrative mRNA and miRNA expression profiles from developing zebrafish head highlight nervous system-preference genes and regulatory networks

Author:

Zhang Shuqiang1ORCID,Yang Jian2,Xu Jie2,Li Jing3,Xu Lian2,Jin Nana4,Li Xiaoyu1

Affiliation:

1. Henan Normal University

2. Nantong University

3. Xinxiang Medical University

4. Nantong City No 1 People's Hospital

Abstract

Abstract Zebrafish is an emerging animal model for studying molecular mechanism underlying neurodevelopmental disorder due to its advantage characters. miRNAs are small non-coding RNAs that play a key role in brain development. Understanding of dynamic transcriptional and post-transcriptional molecules and their regulation during the head development is important for preventing the neurodevelopmental disorder. In this study, we performed the high-throughput sequencing of mRNAs and miRNAs in developing zebrafish head from pharyngula to early larval stages and carried out bioinformatic analysis including differential expression and functional enrichment as well as joint analysis of miRNAs and mRNAs, and also compared with other related public sequencing datasets to aid our interpretation. A large number of differential expression genes with a large fold-change were detected during the head development. Further clustering and functional enrichment analyses indicated that genes in late stage were most related with synaptic signaling. Overlap test analysis showed a significant enrichment of brain-preference and synapse-associated gene-set in the head transcriptome compared with the whole embryo transcriptome. We also constructed miRNA-mRNAs network for those brain-preference genes and focused on those densely connected network components. Altogether, the present study provides developmental profiles of head-enriched mRNAs and miRNAs at three critical windows for nervous system development, which may contribute to the study of neurodevelopmental disorder.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3