Affiliation:
1. Bina Nusantara University
Abstract
Abstract
Sarcasm is often used to express a negative opinion using positive or intensified positive words in social media. This intentional ambiguity makes sarcasm detection, an important task of sentiment analysis. Detecting a sarcastic tone in natural language hinders the performance of sentiment analysis tasks. The majority of the studies on automatic sarcasm detection emphasize on the use of lexical, syntactic, or pragmatic features that are often unequivocally expressed through figurative literary devices such as words, emoticons, and exclamation marks. In this paper, we introduce a multi-channel attention-based bidirectional long-short memory (MCAB-BLSTM) network to detect sarcastic headline on the news. Multi-channel attention-based bidirectional long-short memory (MCAB-BLSTM) proposed model was evaluated on the news headline dataset, and the results-compared to the CNN-LSTM and Hybrid Neural Network were excellent.
Publisher
Research Square Platform LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献