Correlation of protein binding pocket properties with hits’ chemistries used in generation of ultra-large virtual libraries

Author:

Song Robert X.1,Nicklaus Marc C.2,Tarasova Nadya I.1

Affiliation:

1. National Cancer Institute, National Institutes of Health

2. National Cancer Institute, NIH

Abstract

Abstract Although the size of virtual libraries of synthesizable compounds is growing rapidly, we are still enumerating only tiny fractions of the drug-like chemical universe. Our capability to mine these newly generated libraries also lags their growth. That is why fragment-based approaches that utilize on-demand virtual combinatorial libraries are gaining popularity in drug discovery. These à la carte libraries utilize synthetic blocks found to be effective binders in parts of target protein pockets and a variety of reliable chemistries to connect them. There is, however, no data on the potential impact of the chemistries used for making on-demand libraries on the hit rates during virtual screening. There are also no rules to guide in the selection of these synthetic methods for production of custom libraries. We have used the SAVI (Synthetically Accessible Virtual Inventory) library, constructed using 53 reliable reaction types (transforms), to evaluate the impact of these chemistries on docking hit rates for 39 well-characterized protein pockets. The data shows that the hit rates differ significantly for different chemistries with cross coupling reactions such as Sonogashira, Suzuki-Miyaura, Hiyama and Liebeskind-Srogl coupling producing the highest hit rates. Hit rates appear to depend not only on the property of the formed chemical bond but also on the diversity of available building blocks and the scope of the reaction. The data identifies reactions that deserve wider use through increasing the number of corresponding building blocks and suggests the reactions that are more effective for pockets with certain physical and hydrogen bond-forming properties.

Publisher

Research Square Platform LLC

Reference44 articles.

1. 1. A. L. Nazarova, and V. Katritch (2022) It all clicks together: In silico drug discovery becoming mainstream. Clin Transl Med 12: e766. https://doi.org/10.1002/ctm2.766.

2. 2. B. J. Bender, S. Gahbauer, A. Luttens, J. Lyu, C. M. Webb, R. M. Stein, E. A. Fink, T. E. Balius, J. Carlsson, J. J. Irwin, and B. K. Shoichet (2021) A practical guide to large-scale docking. Nat Protoc 16: 4799–4832. https://doi.org/10.1038/s41596-021-00597-z.

3. 3. P. Beroza, J. J. Crawford, O. Ganichkin, L. Gendelev, S. F. Harris, R. Klein, A. Miu, S. Steinbacher, F. M. Klingler, and C. Lemmen (2022) Chemical space docking enables large-scale structure-based virtual screening to discover ROCK1 kinase inhibitors. Nat Commun 13: 6447. https://doi.org/10.1038/s41467-022-33981-8.

4. 4. T. Danel, J. Leski, S. Podlewska, and I. T. Podolak (2023) Docking-based generative approaches in the search for new drug candidates. Drug Discov Today 28: 103439. https://doi.org/10.1016/j.drudis.2022.103439.

5. 5. S. Gahbauer, G. J. Correy, M. Schuller, M. P. Ferla, Y. U. Doruk, M. Rachman, T. Wu, M. Diolaiti, S. Wang, R. J. Neitz, D. Fearon, D. S. Radchenko, Y. S. Moroz, J. J. Irwin, A. R. Renslo, J. C. Taylor, J. E. Gestwicki, F. von Delft, A. Ashworth, I. Ahel, B. K. Shoichet, and J. S. Fraser (2023) Iterative computational design and crystallographic screening identifies potent inhibitors targeting the Nsp3 macrodomain of SARS-CoV-2. Proc Natl Acad Sci U S A 120: e2212931120. https://doi.org/10.1073/pnas.2212931120.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3