Intelligent Monitoring for Anomaly Recognition using CNNand YOLOv9
Author:
Affiliation:
1. Ajeenkya D Y Patil University
2. B.Tech Computer Engineering Ajeenkya D Y Patil University
Abstract
The prompt and precise detection of firearms is essential in today's security environments to ensure public safety. This research paper provides a novel method for real-time weapon detection using Convolutional Neural Network (CNN) techniques and YOLOv9 object recognition framework in both live and prerecorded film. By integrating YOLOv9, object detection accuracy and speed are considerably improved, facilitating the quick identification of possible threats. The presented method exhibits strong performance in various lighting settings and environments, with excellent recall rates and precision thorough testing and assessment. This approach used CNN based architecture and deep learning to effectively detect and categorize weapons in video frames which achieves 97.62 % accuracy.
Publisher
Springer Science and Business Media LLC
Reference20 articles.
1. Mohammad Z. & Khaled Shaalan, Improving video surveillance systems in banks using deep learning techniques, Scientific Reports, vol. 2021, pp.1–17, 10.1038/s41598-023-35190-9, May 2023.
2. Shehzad Khalid OC, Edo A, Waqar, Tenebe I, Theophilus PD, Tahir HUA. March, Weapon detection system for surveillance and security, International Conference on IT Innovation and Knowledge Discovery, pp.1–8, 10.1109/ITIKD56332.2023.10099733, 2023.
3. Mohamed Habib, Weapons Detection for Security and Video Surveillance Using CNN and YOLO-V5s(vol;Ashraf AH,2022
4. Francisco Herrera, A binocular image fusion approach for minimizing false positives in handgun detection with deep learning;Roberto Olmos S;Andalusian Res Inst Data Sci Comput Intell vol
5. Abruzzo B, Carey K, Lowrance C, Sturzinger E, Arnold R, Korpela C. November, Cascaded neural networks for identification and posture-based threat assessment of armed people, IEEE International Symposium on Technologies for Homeland Security (HST), 10.1109/HST47167.2019.9032904, 2019.
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3