Affiliation:
1. University of Minho
2. CNC - Center for Neuroscience and Cell Biology, University of Coimbra
3. University of Coimbra
Abstract
Abstract
Adult cytogenesis, the continuous generation of newly-born neurons (neurogenesis) and glial cells (gliogenesis) throughout life, is highly impaired in several neuropsychiatric disorders, such as Major Depressive Disorder (MDD), impacting negatively on cognitive and emotional domains. Despite playing a critical role in brain homeostasis, the importance of gliogenesis has been overlooked, both in healthy and diseased states. To examine the role of newly formed glia, we transplanted Glial Restricted Precursors (GRPs) into the adult hippocampal dentate gyrus (DG), or injected their secreted factors (secretome), into a previously validated transgenic GFAP-tk rat line, in which cytogenesis is transiently compromised. We explored the long-term effects of both treatments on physiological and behavioral outcomes. Grafted GRPs reversed anxiety-like and depressive-like deficits, while the secretome promoted recovery of only anxiety-like behavior. Furthermore, GRPs elicited a recovery of neurogenic and gliogenic levels in the ventral DG, highlighting the unique involvement of these cells in the regulation of brain cytogenesis. Both GRPs and their secretome induced significant alterations in the DG proteome, directly influencing proteins and pathways related to cytogenesis, regulation of neural plasticity and neuronal development. With this work, we demonstrate a valuable and specific contribution of glial progenitors to normalizing gliogenic levels, rescueing neurogenesis and, importantly, promoting recovery of emotional deficits characteristic of disorders such as MDD.
Publisher
Research Square Platform LLC
Reference89 articles.
1. Neurogenesis in the adult human hippocampus;Eriksson PS;Nat Med.,1998
2. Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults;Sorrells SF;Nature. 2018 Mar
3. Adult neurogenesis, human after all (again): Classic, optimized, and future approaches;Lucassen PJ;Behav Brain Res,2020
4. Human Adult Neurogenesis: Evidence and Remaining Questions;Kempermann G;Cell Stem Cell.,2018
5. Boldrini M, Fulmore CA, Tartt AN, Simeon LR, Pavlova I, Poposka V, et al. Human Hippocampal Neurogenesis Persists throughout Aging. Cell Stem Cell. 2018 Apr;22(4):589–599.e5.