Affiliation:
1. University of British Columbia, Stone Centre at Vancouver General Hospital
2. King Abdulaziz University
3. Infinyx, AI research team
4. Yonsei University College of Medicine
Abstract
Abstract
The correct diagnosis of uric acid (UA) stones has important clinical implications since patients with a high risk of perioperative morbidity may be spared surgical intervention and be offered alkalization therapy. We developed and validated a machine learning (ML)-based model to identify UA stones from non-UA stones. An international, multicenter study was performed on 202 patients who received percutaneous nephrolithotomy for kidney stones with HU < 800. Data from 156 (77.2%) patients were used for model development, while data from 46 (22.8%) patients from a multinational institution were used for external validation. A total of 21,074 kidney and stone contour-annotated computed tomography images were trained with the ResNet-18 Mask R-convolutional neural network algorithm. Finally, this model was concatenated with demographic and clinical data as a fully-connected layer for stone classification. Our model was 100% sensitive in detecting kidney stones in each patient, and the delineation of kidney and stone contours was precise within clinically acceptable ranges. The development model provided an accuracy of 99.9%, with 100.0% sensitivity and 98.9% specificity, in distinguishing UA from non-UA stones. On external validation, the model performed with an accuracy of 97.1%, with 89.4% sensitivity and 98.6% specificity. SHAP plots revealed stone density, diabetes mellitus, and urinary pH as the most important features for classification. Our ML-based model accurately identified and delineated kidney stones and classified UA stones from non-UA stones with the highest predictive accuracy reported to date. Our model can be reliably used to select candidates for an earlier-directed alkalization therapy.
Publisher
Research Square Platform LLC