Trajectory Optimization for AoI-Minimized Data Collection in Multi-UAV-Aided Wireless Sensor Networks

Author:

An Ning1,Hong Yi1,Luo Chuanwen1,Li Deying2,Fan Xin1,Chen Zhibo1

Affiliation:

1. Beijing Forestry University

2. Renmin University of China

Abstract

Abstract

Unmanned Aerial Vehicles (UAVs) have been extensively utilized in numerous scenarios where freshness of information is paramount. Due to the limited endurance of a single UAV, multiple UAVs can ensure the freshness of sensor node information while completing data collection tasks. Therefore this paper focuses on the multi-UAV-aided collaborative data collection problem, aiming to enhance the freshness of information. We use Age of Information (AoI) to measure information freshness, primarily including the sensors’ data aggregation time within clusters, the UAVs’ data collection time and flight time. Firstly, we employ a simulated annealing-based algorithm to construct data aggregation trees within clusters, determining the scheduling order of sensor nodes. Secondly, we assign tasks to the UAVs and establish the association between clusters and UAVs. Finally, based on the results of the previous two steps, we optimize the flight 1 trajectory of UAVs using two schemes, 2-opt Heuristics via Deep Reinforcement Learning and greedy-based multi-trajectory planning. Simulation results demonstrate that this strategy can optimize the average AoI of sensor networks and improve the information freshness.

Publisher

Research Square Platform LLC

Reference20 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3