Dynamic mesophase transition induces anomalous suppressed and anisotropic phonon transport revealed by unified machine learning potential

Author:

张 一1,Yu Linfeng2,董 可鑫3,杨 麒3

Affiliation:

1. 1164746430@qq.com

2. Hunan University

3. 湖南大学机械与运载工程学院

Abstract

Abstract The physical/chemical properties undergo significant transformation in the different states arising from phase transition. However, owing to the lack of a dynamic perspective, transitional mesophases are largely underexamined, which is limited by the high resources burden of first-principles. Here, using molecular dynamics (MD) simulations empowered by advanced unified machine learning (ML) potential, we proffer an innovative paradigm for phase transition: regulating the thermal transport properties via the transitional mesophase triggered by a uniaxial force field. We investigate the mechanical, electrical, and thermal transport properties of the novel two-dimensional carbon allotrope of Janus-graphene with strain engineered phase transition. Notably, we found that the transitional mesophase significantly suppresses the thermal conductivity and induces strong anisotropy near the phase transition point. ML-driven MD simulations meticulously recapitulate the atomic-scale dynamic metamorphosis exhibited in Janus-graphene, where thermal vibration-induced intermediate amorphous or interfacial phases induce strong and anisotropic interfacial thermal resistance, which eludes capture from traditional first-principles methods. The investigation not only endows us with a novel perspective on mesophases during phase transitions but also augment our holistic comprehension of the evolution of material properties.

Publisher

Research Square Platform LLC

Reference47 articles.

1. High-Temperature Silicon Thermal Diode and Switch;Kasprzak M;Nano Energy,2020

2. A Structured Phase Change Material with Controllable Thermoconductive Highways Enables Unparalleled Electricity via Solar-Thermal-Electric Conversion;Zhang Y;Advanced Functional Materials,2022

3. S. Li, Z. Qin, H. Wu, M. Li, M. Kunz, A. Alatas, A. Kavner, and Y. Hu, Anomalous Thermal Transport under High Pressure in Boron Arsenide, Nature 612, 7940 (2022).

4. Y. Zhou, Z.-Y. Dong, W.-P. Hsieh, A. F. Goncharov, and X.-J. Chen, Thermal Conductivity of Materials under Pressure, Nat Rev Phys 4, 5 (2022).

5. Disparate Strain Dependent Thermal Conductivity of Two-Dimensional Penta-Structures;Liu H;Nano Lett,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3