Crop Insect Pest Detection based on Dilated Multi-scale Attention U-Net

Author:

Wang Xuqi1,Zhang Shanwen1,Zhang Ting1

Affiliation:

1. Xijing University

Abstract

Abstract Early detection and identification of insect pests is the premise and basis of scientific control and accurate utilization of Insect pesticides. Aiming at the problems of low detection accuracy and slow training speed of the existing crop Insect pest detection models, a dilated multi-scale attention U-Net (DMSAU-Net) model is constructed for crop Insect pest detection. In its encoder, dilated Inception is designed to replace the convolution layer in U-Net to extract the multi-scale features of insect pest images and improve the accuracy of the model. An attention module is added to its decoder to focus on the edge of the insect pest image and reduce the upsampling noise and accelerate model convergence. The results on the crop insect pest image dataset verify that the proposed method has high segmentation accuracy and good generalization ability, and can be applied to practical crop insect pest monitoring system.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3