Bayesian Inference on the Fréchet-type Extreme Value Distribution based on the Characteristic Prior

Author:

Maswadah M.1ORCID

Affiliation:

1. Aswan University

Abstract

Abstract In this paper, a new method has been used for constructing a prior density function based on the characteristic function, which frees the Bayesian inference from subjectivity to a personal choice that has worried some statisticians. For comparing the characteristic prior with the informative prior, Bayesian inference on the Fréchet-type extreme value distribution parameters has been studied based on symmetric and asymmetric loss functions, via Monte Carlo simulations. The simulation results indicated that the characteristic prior outperformed the informative prior for different sample sizes and several values of the parameters. Finally, a numerical example is given to demonstrate the efficiency of the proposed priors.

Publisher

Research Square Platform LLC

Reference22 articles.

1. Estimation of the unknown parameters of the generalized Fréchet distribution;Abd-Elfattah AM;Journal of Applied Sciences Research.,2009

2. Bayesian approach to life testing and reliability estimation using asymmetric loss function;Basu AP;J. Statist. Plann. Infer.,1991

3. Calabria, R. and Pulcini, G. (1994). An engineering approach to Bayes estimation for the Weibull distribution. Microelectron, Reliability, 34, P. 789–802.

4. Discrimination between the Lognormal and Weibull Distribution;Dumonceaux R;Technometrics No.,1973

5. Eldusoky, B., Maswadah, M. & El- Moasry, A. (2002). Bayesian estimation and prediction based on complete and censored samples from the extreme value distribution, M. Sc. Dissertation. South Valley University.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3