Intelligent identification system of gastric stromal tumors based on blood biopsy indicators

Author:

Han Shangjun1,Song Meijuan1,Wang Jiarui2,Huang Yalong1,Li Zuxi1,Yang Aijia1,Sui Changsheng1,Zhang Zeping1,Qiao Jilin1,Yang Jing3

Affiliation:

1. Gansu University of Traditional Chinese Medicine

2. Xuzhou Medical University

3. Gansu Provincial Hospital

Abstract

Abstract Background The most prevalent mesenchymal-derived gastrointestinal cancers are gastric stromal tumors (GSTs), which have the highest incidence (60–70%) of all gastrointestinal stromal tumors (GISTs). However, simple and effective diagnostic and screening methods for GST remain a great challenge at home and abroad. This study aimed to build a GST early warning system based on a combination of machine learning algorithms and routine blood, biochemical and tumour marker indicators. Methods In total, 697 complete samples were collected from four hospitals in Gansu Province, including 42 blood indicators from 318 pretreatment GST patients, 180 samples of gastric polyps and 199 healthy individuals. In this study, three algorithms, gradient boosting machine (GBM), random forest (RF), and logistic regression (LR), were chosen to build GST prediction models for comparison. The performance and stability of the models were evaluated using two different validation techniques: 5-fold cross-validation and external validation. The DeLong test assesses significant differences in AUC values by comparing different ROC curves, the variance and covariance of the AUC value. Results The AUC values of both the GBM and RF models were higher than those of the LR model, and this difference was statistically significant (P < 0.05). The GBM model was considered to be the optimal model, as a larger area was enclosed by the ROC curve, and the axes indicated robust model classification performance according to the accepted model discriminant. Finally, the integration of 8 top-ranked blood indices was proven to be able to distinguish GST from gastric polyps and healthy people with sensitivity, specificity and area under the curve of 0.941, 0.807 and 0.951 for the cross-validation set, respectively. Conclusion The GBM demonstrated powerful classification performance and was able to rapidly distinguish GST patients from gastric polyps and healthy individuals. This identification system not only provides an innovative strategy for the diagnosis of GST but also enables the exploration of hidden associations between blood parameters and GST for subsequent studies on the prevention and disease surveillance management of GST. The GST discrimination system is available online for free testing of doctors and high-risk groups at https://jzlyc.gsyy.cn/bear/mobile/index.html.

Publisher

Research Square Platform LLC

Reference32 articles.

1. Schaefer IM, DeMatteo RP, Serrano C. The GIST of Advances in Treatment of Advanced Gastrointestinal Stromal Tumor. American Society of Clinical Oncology educational book American Society of Clinical Oncology Annual Meeting. 2022;42:1–15.

2. Gastrointestinal stromal tumours;Blay JY;Nat Rev Dis Primers,2021

3. Gastrointestinal stromal tumor: epidemiology, diagnosis, and treatment;Mantese G;Curr Opin Gastroenterol,2019

4. Gastrointestinal stromal tumor: a review of current and emerging therapies;Al-Share B;Cancer Metastasis Rev,2021

5. Gastrointestinal Stromal Tumours;Sunamak O;J Coll Physicians Surg Pak,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3