Decoding sex-specific vocal repertoire and syntactic usage in the Fragile X mouse model of autism

Author:

Giua Gabriele1ORCID,Iezzi Daniela1ORCID,Caceres-Rodriguez Alba1ORCID,Strauss Benjamin1,Chavis Pascale1ORCID,Manzoni Olivier J.1ORCID

Affiliation:

1. INMED, INSERM U1249

Abstract

Abstract Pup-dam ultrasonic vocalizations (USVs) contribute to the formation of neural circuits and behaviors essential for standard cognitive and socio-emotional development. In conditions like autism and Fragile X Syndrome (FXS), disruptions in pup-dam USV communication hint at a possible connection between abnormal early developmental USV communication and the later emergence of communication and social deficits. Syntax, a crucial element of rodent "language," has rarely been investigated in FXS mice, let alone in specimens of both sexes. Therefore, in this study, we gathered USVs from PND 10 FXS pups during a short period of separation from their mothers, encompassing animals of all possible genotypes and both sexes (i.e., Fmr1-/yvs. Fmr1+/y males and Fmr1+/+, +/-, and -/-females). This allowed us to compare, for the first time, the relative influence of sex and gene dosage on their communication capabilities. Leveraging DeepSqueak and analyzing vocal patterns, we examined intricate vocal behaviors such as call structure, duration, frequency modulation, and temporal patterns. The results demonstrate that FMRP-deficient pups of both sexes display an increased inclination to vocalize when separated from their mothers, and this behavior is accompanied by significant sex-specific changes in the main features of their USVs as well as in body weight. Moreover, the decoding of the vocal repertoire and its syntactic usage revealed that the silencing of the Fmr1 gene primarily alters the qualitative composition of ultrasonic communication in males. These findings highlight the fascinating interplay between Fmr1 gene dosage and sex in shaping communication during infancy.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3