DNA Origami Drives Gene Expression in a Human Cell Culture System

Author:

Oh Chang Yong1,Kaur Haninder1,Tuteja Geetu1,Henderson Eric R.1

Affiliation:

1. Iowa State University

Abstract

Abstract Self-assembling DNA nanoparticles have the potential to significantly advance the targeted delivery of molecular cargo owing to their chemical and architectural flexibility. Recently, it has been demonstrated that the genetic code embedded in DNA nanoparticles produced by the method of DNA origami or related techniques can be recognized and copied by RNA polymerase in vitro. Further, sculpted DNA nanoparticles can serve as a substrate for Cas9-mediated gene modification and gene expression in cell culture. In the present study, we further investigate the ability of DNA origami nanoparticles to be expressed in a human cell line with emphasis on the impact of single-stranded DNA (ssDNA) domains and the contributions of the architectural disposition of genetic control elements, namely promoter and enhancer sequences. Our findings suggest that while cells possess the remarkable capability to express genes within highly folded architectures, the presence and relative density and location of ssDNA domains appears to influence overall levels of gene expression. These results suggest that it may be possible to nuance folded DNA nanoparticle architecture to regulate the rate and/or level of gene expression. Considering the highly malleable architecture and chemistry of self-assembling DNA nanoparticles, these findings motivate further exploration of their potential as an economic nanotechnology platform for targeted gene editing, nucleic acid-based vaccines, and related biotherapeutic applications.

Publisher

Research Square Platform LLC

Reference46 articles.

1. Antitumor Protein Therapy; Application of the Protein Transduction Domain to the Development of a Protein Drug for Cancer Treatment;Harada H;Breast Cancer,2006

2. Targeted drug delivery via caveolae-associated protein PV1 improves lung fibrosis;Marchetti GM;Commun Biol,2019

3. Targeted and intracellular delivery of protein therapeutics by a boronated polymer for the treatment of bone tumors;Yan Y;Bioact Mater,2022

4. Targeting receptor complexes: a new dimension in drug discovery;Rosenbaum MI;Nature Reviews Drug Discovery,2020

5. Targeting Strategies for Tissue-Specific Drug Delivery;Zhao Z;Cell,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3