Deep reinforcement learning-based contention window optimization for IEEE 802.11 networks

Author:

Tu Yi-Hao1,Ma Yi-Wei1,Ke Chih-Heng2

Affiliation:

1. National Taiwan University of Science and Technology

2. National Quemoy University

Abstract

Abstract This study focuses on optimizing the contention window (CW) in IEEE 802.11 networks using deep reinforcement learning (DRL) to enhance the effectiveness of the contention mechanism. Recent research has employed a deep Q-learning network (DQN) as one type of DRL for CW size selection tasks to maximize network throughput. However, a notable limitation of DQN is the substantial overestimation error, which means the predicted reward value significantly deviates from the actual value. To address this issue, our study introduces the smart exponential-threshold-linear with double deep Q-learning network (SETL-DDQN) in a wireless networks scenario, with the aim to mitigate the overestimation error via the CW threshold size optimization with the help of a DDQN-based approach during the learning phase. We experimented with our proposed SETL-DDQN in both static and dynamic scenarios and conducted an analysis to solve the overestimation problem, then enhance the long-term simulation stability. Our experimental results demonstrate that SETL-DDQN achieves more efficient packet transmissions than related existing mechanisms.

Publisher

Research Square Platform LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3