Fusion of multi-regression models based on the histogram information for blood glucose estimation

Author:

Wei Yiting1,Guo Weizhi1,Ling Bingo Wing-Kuen1,Dai Yuheng1,Liu Qing1

Affiliation:

1. Guangdong University of Technology

Abstract

Abstract Diabetes is a chronic disease that severely degrades the human health. Hence, the blood glucose estimation plays an important role for monitoring the diabetic condition. In order to better estimate the blood glucose values, the multi-regression models are employed. It is worth noting that increasing the total number of the regression models would decrease the regression error. Therefore, this paper proposes a method for fusing the various regression models together based on the histogram information of the blood glucose values in the training set. The computer numerical simulation results show that the regression error yielded by our proposed method is significantly lower than those yielded by the existing methods. Also, our proposed method is also applicable for other regression applications.

Publisher

Research Square Platform LLC

Reference10 articles.

1. Sun.H, Saeedi.P, Karuranga.S, et al,“IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045,”2021.

2. Madsbad S, Brock B, Schmitz O. [Postprandial hyperglycemia. Postprandial blood glucose fluctuations, cardiovascular disease and late diabetic complications].[J]. Ugeskrift for Laeger, 2003, 165(33):3149.

3. Mannucci E, Monami M, Pala L, et al. Management of hyperglycemia an type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy: a consensus statement from the American Diabetes Association and the European Association for the Study of Diabetes[J]. Diabetologia, 2007, 52(1):17–30.Keck F S, Siegmund T. Continuous Registration of Peritoneal and Subcutaneous Glucose Content by a Combined Microdialyis/Enzymatic Glucose Measuring Device - ScienceDirect[J]. Biosensors '94, 1994:105.

4. SVKR Rajeswari V P. Prediction of Diabetes Mellitus Using Machine Learning Algorithm[J]. Annals of the Romanian Society for Cell Biology, 2021: 5655–5662.Moore, B. The potential use of radio frequency identification devices for active monitoring of blood glucose levels.[J]. Journal of Diabetes Science & Technology, 2009, 3(1):180–183.

5. Huzooree G, Khedo K K, Joonas N. Glucose prediction data analytics for diabetic patients monitoring[C]//2017 1st International Conference on Next Generation Computing Applications (NextComp). IEEE, 2017: 188–195.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3