Characterization of Collaborative Cross mouse founder strain CAST/EiJ as a novel model for lethal COVID-19

Author:

Baker Candice N.1,Duso Debra2,Kothapalli Nagarama2,Hart Tricia2,Casey Sean2,Cookenham Tres2,Kummer Larry2,Hvizdos Janine2,Lanzer Kathleen2,Vats Purva1,Shanbhag Priya1,Bell Isaac1,Tighe Mike2,Travis Kelsey2,Szaba Frank2,Bedard Olivia1,Oberding Natalie2,Ward Jerrold M.2,Adams Mark D.1,Lutz Cathleen1,Bradrick Shelton S.2,Reiley William W.2,Rosenthal Nadia1

Affiliation:

1. The Jackson Laboratory

2. Trudeau Institute

Abstract

Abstract

Mutations in SARS-CoV-2 variants of concern (VOCs) have expanded the viral host range beyond primates, and a limited range of other mammals, to mice, affording the opportunity to exploit genetically diverse mouse panels to model the broad range of responses to infection in patient populations. Here we surveyed responses to VOC infection in genetically diverse Collaborative Cross (CC) founder strains. Infection of wild-derived CC founder strains produced a broad range of viral burden, disease susceptibility and survival, whereas most other strains were resistant to disease despite measurable lung viral titers. In particular, CAST/EiJ, a wild-derived strain, developed high lung viral burdens, more severe lung pathology than seen in other CC strains, and a dysregulated cytokine profile resulting in morbidity and mortality. These inbred mouse strains may serve as a valuable platform to evaluate therapeutic countermeasures against severe COVID-19 and other coronavirus pandemics in the future.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3