Urban biotope classification incorporates urban forest and green infrastructure for improved environmental land-use planning in Mexico City

Author:

Toledo-Garibaldi María1,Puric-Mladenovic Danijela1,Smith Sandy M.1

Affiliation:

1. University of Toronto

Abstract

Abstract Urban forests are recognized worldwide as the most critical component of green infrastructure due to their capacity to provide various environmental goods and services. As cities continue to expand and their environmental problems intensify, there is a growing need for urban forests and green infrastructure to be better incorporated into strategic land-use planning, especially in developing cities. The first step in building an urban forest management plan is to capture characteristics of the urban forest and how these change across the built environment. Here, we used an urban biotope approach to classify urban forest and environmental characteristics in Mexico City. We sampled 500 fixed-area randomly stratified plots across the city to characterize urban forest structural and compositional variables. PCA and the broken-stick method were used to reduce the number of 25 urban forest variables down to five significant principal components that accounted for 78% of the data's cumulative variation. Ward's method helped classify biotopes into a hierarchical system with seven finer-level biotopes defined by urban forest characteristics (Dunn = 0.09, AC = 0.98), nested within two broader-level biotopes defined by forest canopy conditions (Silhouette = 0.59, AC = 0.99). A no-tree canopy biotope was extracted from sampling locations with no trees. The biotopes derived here can fundament biotope mapping, support decision-making in urban forest planning, including the identification of available planting spaces, tree diversity targets, and canopy protection. Our work in Mexico City demonstrates how the biotope approach can be adapted and used to better incorporate urban forests and green infrastructure into future management planning for any city.

Publisher

Research Square Platform LLC

Reference80 articles.

1. Ahern J (2007) Green infrastructure for cities: The spatial dimension. In: Novotny V, Brown P (eds) Cities of the future: towards integrated sustainable water and landscape management. IWA Publishing, London, pp 267–283

2. Estructura del arbolado y caracterización dasométrica de la segunda sección del Bosque de Chapultepec;Benavides Meza HM;Madera y Bosques,2012

3. The influence of land use type and municipal context on urban tree species diversity;Bourne KS;Urban Ecosyst,2014

4. Analyzing potential tree-planting sites and tree coverage in Mexico City using satellite imagery;Bravo-Bello JC;Forests,2020

5. clValid: An R Package for Cluster Validation;Brock G;J Stat Softw,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3