Mapping karst depressions and sinkholes in anthropogenically influenced areas

Author:

Fuchs Michael1,Reinartz Hermann2,Torizin Jewgenij1,Balzer Dirk1,Kuhn Dirk1,Schüßler Nick1,Hahne Kai1,Nix Thomas2,Gunkel Claudia1

Affiliation:

1. Federal Institute for Geosciences and Natural Resources

2. Landesamt für Bergbau Energie und Geologie

Abstract

Abstract A comprehensive sinkhole inventory is crucial for accurately assessing sinkhole susceptibility. The presented study introduces a semi-automatic approach for mapping potential sinkholes through a geomorphometric analysis of digital elevation models complemented by statistical analysis. This approach aims to augment current sinkhole inventories in quantity and quality. We chose the distinct karst terrain along the southwestern edge of the Harz Mountains in Lower Saxony as our focal area. The genesis of most sinkholes in this area is linked to subrosion processes within the evaporitic Zechstein Group, predominantly driven by the hydration of anhydrite to gypsum followed by its steady dissolution. The region exhibits diverse karst formations, ranging from bare and slightly covered karst to a fold-block landscape where resilient strata overlay subrosion zones. Human influence has also significantly reshaped this landscape over the past millennium, introducing numerous artificial structures and posing challenges to fully automated sinkhole detection. We employed a statistically refined landform classification based on geomorphons to identify localities of potential sinkhole formations, followed by a masking process to refine our results. In analyzing the distribution of these potential sinkholes, we took into account various geological and environmental factors, such as different types of karst, fault lines, and land cover, while purposefully excluding anthropogenic features from our analysis. The results revealed previously undocumented sinkholes in areas where the overburden layers, particularly in the Buntsandstein formation, are increasingly thick. The proposed approach proves to be particularly adept at detecting sinkholes in regions where they are isolated or have not been extensively surveyed yet.

Publisher

Research Square Platform LLC

Reference30 articles.

1. AD-HOC-Arbeitsgruppe Geologie (2016) Gefahrenhinweiskarten geogener Naturgefahren in Deutschland – ein Leitfaden der Staatlichen Geologischen Dienste (SGD). Geologisches Jahrbuch Reihe A, Band A 164

2. Autorenkollektiv (2021) Erdfälle - Empfehlungen zur Sicherung und Erkundung in Deutschland: Arbeitskreis 12 des Direktorenkreises der Staatlichen Geologischen Dienste von Deutschland. Geowissenschaftliche Mitteilungen von Thüringen, 15: 1–59; Jena.

3. Balzer D, Fuchs M, Gunkel C, Hahne K, Kuhn D, Nix T, Reinartz H, Schüßler N, Torizin J (2023) Erdfälle in Deutschland, Teil I – Beiträge zur inventarbasierten Analyse, zur lokalen physikalisch-geometrischen Modellierung und zur regionalen Modellierung der Empfindlichkeit. - Abschlussbericht zu einem Kooperationsprojekt zwischen dem Landesamt für Bergbau, Energie und Geologie (LBEG) des Bundeslands Niedersachsen und der Bundesanstalt für Geowissenschaften und Rohstoffe (BGR) im Auftrag des Direktoren-Kreises der Staatlichen Geologischen Dienste in Deutschland; 210 S., 80 Abb., 86 Tab.; Hannover.

4. The Impact of Digital Elevation Model Preprocessing and Detection Methods on Karst Depression Mapping in Densely Forested Dinaric Mountains;Ciglič R;Remote Sens.,2022

5. Doctor DH, Jones JM, Wood NJ, Falgout JT, Igorevna Rapstine N (2020) Progress toward a preliminary karst depression density map for the conterminous United States. In Proceedings of the 16th Sinkhole Conference 2020, San Juan, PR, USA, 20–24 April 2020; pp. 315–326.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3