Abstract
Abstract
Background
Bone functional adaptation rationalizes the inhomogeneous morphology found in bone. By means of computed tomography osteoabsorptiometry and micro-computed tomography, the mineralisation of the subchondral endplates and trabecular microstructure of vertebral bodies can be assessed to visualise the chronic loading conditions bone endures over time. In this study, we determined cancellous and compartment-specific trabecular architecture in the cervical vertebra to aid with successful integration of orthopaedic implants.
Methods
We examined the micro-computed tomography scans of seven prospectively healthy C4 vertebrae, evaluated their microstructure parameters (bone volume fraction (BV/TV), bone surface density (BS/BV), trabecular thickness (Tb.Th), trabecular separation (Tb.Sp), trabecular number per volume (Tb.N), connectivity density (Conn.D), structure model index (SMI), and degree of anisotropy (DA), and compared the trabecular architecture in twelve predefined volumes of interest; the cranial and caudal 0–10%, 10–15%, and 25–50% in both the ventral and dorsal half. Using computed tomography osteoabsorptiometry, the subchondral bone mineralisation of the subchondral endplates of nine C4 vertebrae was also evaluated.
Results
Highest mineralisation is located dorsally at the endplates. Tb.Sp and Tb.N were the only two parameters that displayed significant differences in averaged values of VOI. Nonetheless, distinct, consistent ventral-dorsal modulations were seen in matched sample ventral-dorsal comparison in the BV/TV, BS/BV, and SMI overall levels, as well as in Tb.Th in the three caudal levels. To simplify the vertebra was split into ventral-cranial, dorsal-cranial, ventral-caudal, and dorsal-caudal equal quarters. The ventral quarters display higher BV/TV, respectively lower BS/BV and SMI than their sample paired dorsal quarters. The ventral-cranial quarter shows the lowest BV/TV and the highest BS/BV and SMI, describing spacious cancellous bone with rod-like trabeculae. In contrast, the dorsal-caudal quarter exhibits the highest BV/TV and Tb.Th and the lowest BS/BV and SMI, illustrating thicker, denser, and more plate-like trabecula. The dorsal-cranial and ventral-caudal quarters are comparable and represent intermediate characteristics.
Conclusions
Our results suggest that the strongest part is the caudal dorsal part, and the weakest is the cranial ventral one. Recommend placement of orthopaedic implants, should be positioned dorsally with screws anchored in the dorsal-caudal region.
Publisher
Research Square Platform LLC