Assessment and Prediction of Groundwater using Geospatial and ANN modeling

Author:

Dadhich Ankita Pran1,Goyal Rohit1,Dadhich Pran Nath2

Affiliation:

1. Malaviya National Institute of Technology

2. Poornima Institute of Engineering and Technology

Abstract

Abstract In semi-arid regions the deterioration in groundwater quality and drop in water level upshots the importance of spatio-temporal mapping with geospatial and advanced modeling techniques. In present study, changes in water level, water quality trend patterns and future scenarios of groundwater in 171 villages of Phagi tehsil, Jaipur district was assessed using eight years (2012-2019) groundwater data. Spatial interpolation maps were drawn using kriging method for pre-monsoon season and integrated with three different time series forecasting models (Simple Exponential Smoothing, Holt's Trend Method, ARIMA) and Artificial Neural Network models to ascertain the optimal prediction for groundwater level and quality parameters. Results reveal that the use of ANN model can describe the behavior of groundwater level and quality parameters more accurately than time series forecasting models. In addition, different ANN algorithms were tested to select the best-performing algorithm and ANN15 is found the most accurate one in simulating the magnitude and patterns of pre-monsoon water level data for year 2019 with R2 = 0.98, and NSE = 0.81. The change in groundwater table was observed with more than 4.0m rise in 81 villages during 2012-2013 whereas ANNpredicted results of 2023-2024 infer no rise in water table (>4.0m). Water level drop of more than 6.0m was observed in 16 villages of Phagi tehsil based on predicted results of 2024. Assessment of groundwater quality parameters like Total dissolved solids, chloride, fluoride and nitrate indicate chemically unsuitable groundwater for drinking purpose in most part of the Phagi. ANNpredictions point out excess nitrate content in 58% villages however, Water quality Index reveals unfit groundwater in 74% villages for human consumption in 2024. This time series and projected outcome of groundwater at village level can assist the planners and decision-makers for proper management of groundwater risk areas.

Publisher

Research Square Platform LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3