1. a) Doble M, Kruthiventi AK (2007) Green Chemistry & Engineering. Academic Press 3: 53–67 b) Bryan MC, Dillon B, Hamann LG, Hughes GJ, Kopach ME, Peterson EA, Pourashraf M, Raheem I, Richardson P, Richter D, Sneddon HF (2013) Sustainable practices in medicinal chemistry: current state and future directions. J. Med. Chem. 56: 6007–6021 c) Zhang W, Cue Jr BW (2012) Green Techniques for Organic Synthesis and Medicinal Chemistry. John Wiley & Sons, Ltd.
2. a) Dunn P (2012) The importance of Green Chemistry in Process Research and Development. Chem. Soc. Rev. 41: 1452–1461 b) Anastas PT, Warner JC (1998) Principles of green chemistry. Green Chemistry, Theory and Practice, Oxford University Press, Oxford.
3. a) Mitra B, Ghosh P (2021) Humic acid: A Biodegradable Organocatalyst for Solvent-free Synthesis of Bis(indolyl)methanes, Bis(pyrazolyl)methanes, Bis-coumarins and Bis-lawsones. Chemistry Select 6: 68–81 b) Wang H, Wang Y, Han Y, Zhao W, Wang X (2020) Humic acid as an efficient and reusable catalyst for one pot three-component green synthesis of 5-substituted 1H-tetrazoles in water. RSC Adv. 10: 784–789
4. Hydrophobic effects on simple organic reactions in water;Breslow R;Acc. Chem. Res.,1991
5. a) Welton T (1999) Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis. Chem. Rev. 99: 2071–2084 b) Wasserscheid P, Keim W (2000) Ionic liquids—new solutions for transition metal catalysis. Angew Chem. Int. Ed. 39: 3772–3789 c) Gordon CM (2001) New developments in catalysis using ionic liquids. Appl. Catal. A. 222: 101–117 d) Earle MJ, Seddon KR (2000) Ionic liquids. Green solvents for the future. Pure Appl. Chem. 72: 1391–1398