Multi-criteria evaluation (MCE) of groundwater prospect and vulnerability index mapping from Second-order geo-electric indices: A case study of coastal environments

Author:

Eze Stanley Uchechukwu1,Essien Ekom E.2,Edirin Okiotor M.3,Ozegin Kesyton Oyamenda4,Saleh Saleh A.5,Maruff Bello A.5,Ugwu Joshua Udoka6

Affiliation:

1. FUPRE: Federal University of Petroleum Resources Effurun

2. University of Portharcourt

3. Nigeria Maritime University

4. Ambrose Alli University Faculty of Engineering and Technology

5. Petroleum Training Institute

6. Michael Okpara University of Agriculture

Abstract

Abstract Exploration, management, and conservation of groundwater resources are critical stages toward potable water supply, driven by an expanding populace and the threat of a new norm posed by the distinctive coronavirus (COVID-19) pandemic. An in-depth assessment of the potential of groundwater reserves and susceptibility, using a multi-criteria evaluation, is required to aid in the planning of exploration programs for groundwater well location. Thirty (30) vertical electrical soundings (VES) were collected in Okerenkoko, Warri-Southwest, Delta State, to assess groundwater potential and vulnerability indicators. The VES data were used to obtain the first-order geoelectric variables, which were further exploited to calculate the geo-hydraulic parameters (hydraulic conductivity and transmissivity) and the vulnerability indices of the aquifer. For aquifer vulnerability appraisal, the AVI (aquifer vulnerability index), GOD (groundwater occurrence, overlying lithology, and depth to the aquifer), and GLSI (geoelectric layer susceptibility index) models were used. The groundwater characteristics in the area were evaluated using the aquifer resistivity, thickness, transmissivity and coefficient of anisotropy values of the aquifer layers defined from VES 1–30. The results show that aquifer layers with low resistivity favor more saturation due to immense porosity and therefore have greater groundwater potential than aquifers with high resistivity. The geoelectric structures defined by VES 1, 2 and 4 were consistent in their groundwater potential and yield judging from the multi-criteria assessments. The estimation of AVI, GOD, and GLSI models for aquifer threat assessment was facilitated by the multi-criteria evaluation of vulnerability indices utilizing hydro-geophysical parameters and index-based approaches. The models depend on the symbiotic effects of geologic array and thickness as the basis for the magnitude of conservation imparted to any particular aquifer involved. The AVI model map depicts that most of the VES locations were rated high (C between 1 and 2) to extremely high (C < 1), indicating that the aquifers at these locations are vulnerable to pollution. However, the extent of vulnerability observed in the GOD model is less than in the AVI model, as GOD accords much more inclination to the inherent properties of geologic entities. The GOD model map categorized the vulnerability index ratings in the area as negligible (0.0-0.1), low (0.1–0.3) and moderate (0.3–0.5), with most VES locations ranked low to moderate, which indicates that these locations are susceptible to vulnerability. In the GLSI model, individual overlying layer thicknesses were prioritized. The GLSI model map shows that the vulnerability index ratings in the area are ranked as moderate (2.00-2.99), high (3.00-3.99) and extremely high (≥ 4.00) with most of the VES locations ranked moderate to high with the exception of VES 27, which ranked extremely high in both AVI and GLSI indices. By correlating the results of vulnerability index valuation for the AVI, GOD and GLSI models, more correlation was observed between the AVI and GLSI models. These findings validate the adoption of a multi-criteria evaluation methodology for groundwater potential and aquifer vulnerability studies and are strongly recommended as practical criteria for locating subsurface aquifers and their protective measures for groundwater prospect development planning and management.

Publisher

Research Square Platform LLC

Reference46 articles.

1. Gap analysis and strategic implementation of environmental impact assessment a pathway to achieving the SDGs in Nigeria;Abija FA;Int J Environ Monit Prot,2018

2. Assessment of Aquifer Hydraulic Properties, Groundwater Potential and Vulnerability Integrating using Geoelectric Methods with SRTM -DEM and LANDSAT-7 ETM lineament Analysis in Parts of Cross River State, Nigeria;Abija FA;Lond J Res Sci,2019

3. Application of Multi-Criteria Decision Analysis to Geo-electric and Geology Parameters for Spatial Prediction of Groundwater Resources Potential and Aquifer Evaluation;Adiat AN;Pure Appl Geophys,2013

4. A Mamdani adaptive neural fuzzy inference system for improvement of groundwater vulnerability;Agoubi B;Groundwater,2018

5. Amaize E (2006) Oil spill in Olomoro destroys aquatic life and economic crops. Vanguard Newspaper, 13th September: 20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3