Exploring Deep Fully-convolutional Neural Networks for Surface Defect Detection in Complex Geometries

Author:

García Daniel1ORCID,García Diego,Díaz Ignacio,Marina Jorge

Affiliation:

1. Universidad de Oviedo

Abstract

Abstract

In this paper, we propose a machine learning approach for detecting superficial defects in metal surfaces using point cloud data. We compare the performance of two popular deep learning architectures, Multilayer Perceptron Networks (MLPs) and Fully Convolutional Networks (FCNs), with varying feature sets. Our results show that FCNs outperformed MLPs in terms of precision, recall, and f1-score. We found that transfer learning with pre-trained models can improve performance when the amount of available data is limited. Our study highlights the importance of considering the amount and quality of training data in developing machine learning models for defect detection in industrial settings with 3D images.

Publisher

Springer Science and Business Media LLC

Reference62 articles.

1. Jui-Sheng Chou and Abdi Suryadinata Telaga (2014) Real-time detection of anomalous power consumption. Renewable and Sustainable Energy Reviews 33: 400 - 411 https://doi.org/https://doi.org/10.1016/j.rser.2014.01.088, http://www.sciencedirect.com/science/article/pii/S1364032114001142, 1364-0321

2. Li, Zhe and Li, Jingyue and Wang, Yi and Wang, Kesheng (2019) A deep learning approach for anomaly detection based on SAE and LSTM in mechanical equipment. The International Journal of Advanced Manufacturing Technology 103: https://doi.org/10.1007/s00170-019-03557-w, 07

3. Azimi, Mohsen and Pekcan, Gokhan (2019) Structural Health Monitoring Using Extremely-compressed Data through Deep Learning. Computer-Aided Civil and Infrastructure Engineering : https://doi.org/10.1111/mice.12517, 11

4. Xiang-Yang Wang and Juan Bu (2010) A fast and robust image segmentation using FCM with spatial information. Digital Signal Processing 20(4): 1173 - 1182 https://doi.org/https://doi.org/10.1016/j.dsp.2009.11.007, http://www.sciencedirect.com/science/article/pii/S1051200409002437, 1051-2004

5. Ghosh, Swarnendu and Das, Nibaran and Das, Ishita and Maulik, Ujjwal. Understanding Deep Learning Techniques for Image Segmentation. arXiv.org perpetual, non-exclusive license, 2019, arXiv, Computer Vision and Pattern Recognition (cs.CV), Machine Learning (cs.LG), Neural and Evolutionary Computing (cs.NE), FOS: Computer and information sciences, FOS: Computer and information sciences, https://arxiv.org/abs/1907.06119, 10.48550/ARXIV.1907.06119

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3