Machine Learning-Driven Strategies for Enhanced Pediatric Wheezing Detection

Author:

Moon Hye Jeong1,Ji Hyunmin2,Kim Baek Seung3,Kim Beom Joon4,Kim Kyunghoon1

Affiliation:

1. Seoul National University College of Medicine

2. Seoul National University

3. Seoul National University Bundang Hospital

4. The Catholic University of Korea

Abstract

Abstract

Background Auscultation is a critical diagnostic feature of lung diseases, but it is subjective and challenging to measure accurately. To overcome these limitations, artificial intelligence models have been developed. Methods In this prospective study, we aimed to compare respiratory sound feature extraction methods to develop an optimal machine learning model for detecting wheezing in children. Pediatric pulmonologists recorded and verified 103 instances of wheezing and 184 other respiratory sounds in 76 children. Various methods were used for sound feature extraction, and dimensions were reduced using t-distributed Stochastic Neighbor Embedding (t-SNE). The performance of models in wheezing detection was evaluated using a kernel support vector machine (SVM). Results The duration of recordings in the wheezing and non-wheezing groups were 89.36 ± 39.51 ms and 63.09 ± 27.79 ms, respectively. The Mel-spectrogram, Mel-frequency Cepstral Coefficient (MFCC), and spectral contrast achieved the best expression of respiratory sounds and showed good performance in cluster classification. The SVM model using spectral contrast exhibited the best performance, with an accuracy, precision, recall, and F-1 score of 0.897, 0.800, 0.952, and 0.869, respectively. Conclusion Mel-spectrograms, MFCC, and spectral contrast are effective for characterizing respiratory sounds in children. A machine learning model using spectral contrast demonstrated high detection performance, indicating its potential utility in ensuring accurate diagnosis of pediatric respiratory diseases.

Publisher

Research Square Platform LLC

Reference24 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3