Revisiting assumptions in test-negative studies for estimating vaccine effectiveness: the need for a clinical case definition

Author:

Sullivan Sheena1ORCID,Khvorov Arseniy1,Huang Xiaotong2,Wang Can2,Ainslie KylieORCID,Nealon Joshua2ORCID,Yang Bingyi2,Cowling Benjamin2ORCID,Tsang Tim2

Affiliation:

1. Peter Doherty Institute for Infection and Immunity

2. University of Hong Kong

Abstract

Abstract Test negative studies have been used extensively for the estimation of COVID-19 vaccine effectiveness (VE). Such studies are able to estimate VE against medically-attended illness under certain assumptions. Selection bias may be present if the probability of participation is associated with vaccination or COVID-19, but this can be mitigated through use of a clinical case definition to screen patients for eligibility, which increases the likelihood that cases and non-cases come from the same source population. We examined the extent to which this type of bias could harm COVID-19 VE through systematic review and simulation. A systematic review of test-negative studies was re-analysed to identify studies ignoring the need for clinical criteria. Studies using a clinical case definition had a lower pooled VE estimate compared with studies that did not. Simulations varied the probability of selection by case and vaccination status. Positive bias away from the null (i.e., inflated VE consistent with the systematic review) was observed when there was a higher proportion of healthy, vaccinated non-cases, which may occur if a dataset contains many results from asymptomatic screening in settings where vaccination coverage is high. We provide an html tool for researchers to explore site-specific sources of selection bias in their own studies. We recommend all group consider the potential for selection bias in their vaccine effectiveness studies, particularly when using administrative data.

Publisher

Research Square Platform LLC

Reference18 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3