Effect of pyrolysis temperature on the binding characteristics of DOM derived from livestock manure biochar with Cu(II)

Author:

Huang Shujun1,Chen Muxin1,Lu Hongxiu2,Eitssayeam Sukum3,Min Yulin1,Shi Penghui1ORCID

Affiliation:

1. Shanghai University of Electric Power

2. Shanghai Vocational College of Agriculture and Forestry

3. Chiang Mai University

Abstract

Abstract Biochar-derived dissolved organic matter (BDOM) has the potential to influence the environmental application of biochar and the behavior of heavy metals. In this study, the binding properties of BDOM derived from livestock manure biochar at different pyrolysis temperatures with Cu were investigated based on a multi-analytical approach. The results showed that the DOC concentration, aromatics and humification degree of BDOM were higher in the process of low pyrolysis of biochar. The pyrolysis temperature changed the composition of BDOM functional groups, which affected the binding mechanism of BDOM-Cu(II). Briefly, humic-like and protein-like substances dominated BDOM-Cu(II) binding at low and high pyrolysis temperatures, respectively. The higher binding capacity for Cu was exhibited by BDOM derived from the lower pyrolysis temperature, due to the carboxyl as the main binding site in humic acid had high content and binding ability at low-temperature. The amide in proteins only participated in the BDOM-Cu(II) binding at high pyrolysis temperature, and polysaccharides also played an important role in the binding process. Moreover, the biochar underwent the secondary reaction at certain high temperatures, which led to condensation reaction of the aromatic structure and the conversion of large molecules into small molecules, affecting the BDOM-Cu(II) binding sites.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3