Deep Reinforcement Learning Approach Based Grammatical Error Correction

Author:

Akbar Muhammad Hamza1,Asghar Rabail1,Hussain Muzammal1,Farhan Muhammad1,ALOTAIBI Faiz Abdullah2,Alnfiai Mrim M.3

Affiliation:

1. COMSATS University Islamabad

2. King Saud University

3. Taif University

Abstract

Abstract Natural Language Processing (NLP) is a field of study that focuses on the interaction between computers and human language. It encompasses various techniques and methodologies aimed at enabling machines to understand, interpret, and generate human language text or speech. NLP plays a crucial role in many applications, including machine translation, sentiment analysis, information retrieval, and Grammatical Error Correction (GEC). Grammatical Error Correction (GEC) is an important task in natural language processing that aims to automatically correct errors in written text. It involves detecting and correcting errors related to grammar, syntax, spelling, punctuation, and other linguistic aspects. However, existing study is solely based on classical machine learning and deep learning methods for GEC. This study proposes a new approach using a DQN model and leverages the C4_200M dataset to automate the GEC process. The main goal of this study is to optimize the selection of action-value function (Q-function) and train a DRL model for automatic grammatical error correction and set baseline results using reinforcement learning (RL) techniques. Findings show that the proposed DQN model outperformed machine learning and rule‑based techniques.

Publisher

Research Square Platform LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Automatic English Grammar Correction Tool using Recurrent Neural Network;2024 Second International Conference on Data Science and Information System (ICDSIS);2024-05-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3