Loss of cholinergic input to the entorhinal cortex is an early indicator of cognitive impairment in natural aging of humans and mice

Author:

Ananth Mala R.1ORCID,Gardus John D.2,Huang Chuan3ORCID,Palekar Nikhil2,Slifstein Mark2ORCID,Zaborszky Laszlo4ORCID,Parsey Ramin V.2ORCID,Talmage David A.1ORCID,DeLorenzo Christine2ORCID,Role Lorna W.1ORCID

Affiliation:

1. National Institutes of Health

2. Stony Brook Medicine

3. Emory University School of Medicine

4. Rutgers University

Abstract

Abstract In a series of translational experiments using fully quantitative positron emission tomography (PET) imaging with a new tracer specific for the vesicular acetylcholine transporter ([18F]VAT) in vivo in humans, and genetically targeted cholinergic markers in mice, we evaluated whether changes to the cholinergic system were an early feature of age-related cognitive decline. We found that deficits in cholinergic innervation of the entorhinal cortex (EC) and decline in performance on behavioral tasks engaging the EC are, strikingly, early features of the aging process. In human studies, we recruited older adult volunteers that were physically healthy and without prior clinical diagnosis of cognitive impairment. Using [18F]VAT PET imaging, we demonstrate that there is measurable loss of cholinergic inputs to the EC that can serve as an early signature of decline in EC cognitive performance. These deficits are specific to the cholinergic circuit between the medial septum and vertical limb of the diagonal band (MS/vDB; CH1/2) to the EC. Using diffusion imaging, we further demonstrate impaired structural connectivity in the tracts between the MS/vDB and EC in older adults with mild cognitive impairment. Experiments in mouse, designed to parallel and extend upon the human studies, used high resolution imaging to evaluate cholinergic terminal density and immediate early gene (IEG) activity of EC neurons in healthy aging mice and in mice with genetic susceptibility to accelerated accumulation amyloid beta plaques and hyperphosphorylated mouse tau. Across species and aging conditions, we find that the integrity of cholinergic projections to the EC directly correlates with the extent of EC activation and with performance on EC-related object recognition memory tasks. Silencing EC-projecting cholinergic neurons in young, healthy mice during the object-location memory task impairs object recognition performance, mimicking aging. Taken together we identify a role for acetylcholine in normal EC function and establish loss of cholinergic input to the EC as an early, conserved feature of age-related cognitive decline in both humans and rodents.

Funder

Alzheimer's Foundation of America

National Institute of Neurological Disorders and Stroke

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3