Separability Analysis of Back-Scattering Coefficient of NovaSAR-1 S-band SAR datasets for different Land Use Land Cover (LULC) classes

Author:

Bhardwaj Ashutosh1ORCID,Saini Ojasvi1,Chatterjee R. S.1

Affiliation:

1. Indian Institute of Remote Sensing

Abstract

Abstract NovaSAR-1 is a joint technology initiative of SSTL (Surrey Satellite Technology Ltd.), UK, and Airbus DS (former EADS Astrium Ltd, Stevenage, UK). The NovaSAR-1 mini-satellite was launched on 16 September 2018 and it is operating on the S-band frequency range, which is less common in Spaceborne Synthetic Aperture Radar (SAR) systems. Both higher and lower SAR frequency bands (L-band & X-band SAR) have their advantages as well as limitations in different kinds of applications. High frequency (X-band) SAR systems are useful for top surface information extraction such as the DSM generation. However, at the same time, more noise and lesser coherence issues are associated with high-frequency SAR systems. Low-frequency SAR (L-band) systems exhibit better ground penetration, high coherence, and low noise, but less precise scatterer level information. The S-band comes approximately in the middle of the X and L-band SAR frequency range and may be used as a trade-off between high and low-frequency SAR systems to have some advantages. In the presented study, the separability analysis of the radar backscattering coefficient of HH polarization (Stripmap and ScanSAR) of NovaSAR-1 S-band datasets corresponding to different land use and land covers (LULCs) has been done to analyze the potential of NovaSAR-1 S-band SAR data. The analysis was carried out for datasets acquired between 9th July 2019 to 15th July 2019 at 5 experimental sites in parts of six different Indian states (West Bengal, Maharashtra, Jharkhand, Odisha, Chhattisgarh, and Uttar Pradesh). The statistical analysis of σ० for five different sites of India for different LULCs, such as bare soil, forest, water, urban, cropland, and road features has been carried out. The range for minimum and maximum mean σ० values for urban, sub-urban, cropland, bare soil, barren land, forest, turbid water, road features, water with a smooth surface (calm water), and road features (airplane runway) were found to be -5.45 to 4.76, -11.14 to -5.21, -17.25 to -5.99, -18.15 to -13.44, -17.64 to -9.34, -17.17 to -14.34, -18.2 to -14.05, -27.29 to -23.76 and − 26.64 to -14.98 respectively. The range of σ० pixel values of calibrated datasets corresponding to different LULCs depicted that the data quality is good for the identification of various land covers. The separability analysis of the different land cover classes depicted that classes have good separability except for a few pairs of LULC. With the availability of fully polarimetric and InSAR data in the planned NISAR mission, the polarimetric scattering behaviour with phase information for InSAR will further be utilized.

Publisher

Research Square Platform LLC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3