Spontaneous Formation of MXene-Oxidized Sono/Chemo-Dynamic Sonosensitizer/Nanocatalyst for Antibacteria and Bone-Tissue Regeneration

Author:

Yu Yang1,Lu Qunshan1,Sun Junyuan1,Zhang Pengfei1,Zeng Linran2,Vasilev Krasimir3,Zhao Yunpeng1,Chen Yu4,Liu Peilai1

Affiliation:

1. Qilu Hospital of Shandong University

2. The 1st Affiliated Hospital of Kunming Medical University

3. Academic Unit of STEM, University of South Australia, Mawson Lakes, Adelaide 5095, South Australia

4. Shanghai University

Abstract

Abstract Prolonged and incurable bacterial infections in soft tissue and bone are currently causing large challenges in the clinic. Two-dimensional (2D) materials have been designed to address these issues, but materials with satisfying therapeutic effects are still needed. Herein, CaO2-loaded 2D titanium carbide nanosheets (CaO2-TiOx@Ti3C2, C-T@Ti3C2) were developed. Surprisingly, this nanosheet exhibited sonodynamic ability, in which CaO2 caused the in situ oxidation of Ti3C2 MXene to produce acoustic sensitiser TiO2 on its surface. In addition, this nanosheet displayed chemodynamic features, which promoted a Fenton reaction triggered by self-supplied H2O2. We detected that C-T@Ti3C2 nanosheets increased reactive oxygen species (ROS) production in response to sonodynamic therapy, which displayed an ideal antibacterial effect. Furthermore, these nanoreactors facilitated the deposition of Ca2+, which promoted osteogenic transformation and enhanced bone quality in osteomyelitis models. Herein, a wound healing model and prosthetic joint infection (PJI) model were established, and the C-T@Ti3C2 nanosheets played a protective role in these models. Taken together, the results indicated that the C-T@Ti3C2 nanosheets function as a multifunctional instrument with sonodynamic features, which might reveal information regarding the treatment of bacterial infections during wound healing.

Publisher

Research Square Platform LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Application prospect of calcium peroxide nanoparticles in biomedical field;REVIEWS ON ADVANCED MATERIALS SCIENCE;2023-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3