Simultaneous study of different combinations of ZSM- 5 templates and operating conditions in the MTP process; Designing, Modeling and Optimization by RSM-ANN-GA

Author:

Kalantari Neda1,Farzi Ali1,Hamooni Faez1,Delibaş Nagihan Çaylak2,Tarjomannejad Ali1,Niaei Aligholi1,Salari Dariush1

Affiliation:

1. University of Tabriz

2. Sakarya University

Abstract

Abstract Process of converting methanol to propylene is influenced by many parameters. The use of smart techniques can be an effective way to investigate variable parameters and finding optimal conditions. In this work, optimal design of ZSM-5 catalysts with different combinations of templates and operating conditions in methanol to propylene process was performed using response surface methodology and hybrid artificial neural network-genetic algorithm method. Objective functions for optimization were methanol conversion and propylene selectivity. Effects of different variables in the dual-responses system, including molar ratios of tetra propyl ammonium bromide (TPABr), Cetyltrimethylammonium bromide (CTAB), and Pluronic F127, as well as weight hourly space velocity of feed and process temperature on the performance of catalysts, were studied both experimentally and theoretically. Modeling results showed that the designed neural network structure for the process had superior accuracy compared to RSM with correlation coefficients of 0.9976, 0.9950 and 0.9946 for training, validation and testing, respectively. By combining optimal templates, optimum operating temperature of 420 °C and WHSV of 1 h-1 were obtained based on the genetic algorithm to achieve maximum selectivity of propylene and the highest possible conversion of methanol. The optimal catalyst had stable performance under the optimal conditions.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3