MXRFCS: Design of an augmented Multidomain XRay Feature representation model for identification of CoVID Severity levels

Author:

Thombre Supriya1,Malik Latesh1,Kumar Sanjay1

Affiliation:

1. Kalinga University

Abstract

Abstract The COVID-19 pandemic has placed an enormous strain on healthcare systems worldwide, leading to a need for more efficient methods of identifying the severity of COVID-19 patients to efficiently allocate resources. Existing Xray processing models for identification of COVID-19 are either highly complicated or showcase lower efficiency when applied for real-time scenarios. To overcome these issues, this paper presents a novel approach for identifying the severity of COVID-19 patients using an augmented multimodal X-ray feature representation model. The proposed model combines X-ray images, clinical data, and demographic information to create a robust representation of individual patient condition. The collected information is converted into multidomain feature sets, including frequency, Gabor, Wavelet and entropy components. A customized deep neural network is trained on this representation to predict the severity level of COVID-19 patients. To evaluate the performance of the proposed model, we used a dataset of X-ray images and clinical data from COVID-19 patients. Our results demonstrate that the proposed model outperforms existing methods for identifying COVID-19 severity levels, achieving an accuracy of 98.5% on multiple dataset samples. The proposed model's performance was observed to be promising in terms of precision, recall and delay, thus has the potential to aid in the early identification and effective management of severe COVID-19 cases, thus contributing to the global effort to combat the COVID-19 pandemic under clinical use cases.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3