Optimizing simultaneous selection in long-term breeding: a stochastic simulation study for a tropical corn haploid inducer population

Author:

Fritsche-Neto Roberto1ORCID,Sabadin Felipe2,doVale Julio César3,Souza Pedro Henrique4,Borges Karina Lima Reis5ORCID,Crossa Jose6

Affiliation:

1. Louisiana State University

2. Virginia Tech: Virginia Polytechnic Institute and State University

3. Universidade Federal do Ceara

4. ESALQ-USP: Universidade de Sao Paulo Escola Superior de Agricultura Luiz de Queiroz

5. University of Florida

6. CIMMYT: Centro Internacional de Mejoramiento de Maiz y Trigo

Abstract

Abstract Plant breeders widely use recurrent selection schemes to increase the frequency of favorable alleles for quantitative traits in a population. Although simultaneous selection is complex because it involves several traits combined with selection cycles, the use of selection indexes (SI) is applied to increase the chance of success of the breeding program. Moreover, many indices are available in the literature; therefore, simulations can help breeders determine which selection index can be adjusted better considering the selection goals, intensity, and genetic correlation among traits over breeding cycles. In this context, we aimed to optimize the simultaneous selection in long-term breeding programs via stochastic simulations using as an example a tropical maize inducer breeding. Furthermore, we proposed a new approach to optimize the initial weights for the Smith-Hazel method to maximize the genetic gains for all traits in a balanced way. Finally, our results confirm that the traditional Smith and Hazel approach outperformed other methods for the total and balanced response to selection for important traits in a tropical corn haploid inducer breeding population.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3