Kynureninase knockdown inhibits cisplatin resistance in vivo and in vitro and impacts the prognosis of cervical adenocarcinoma

Author:

Zhang Jun-wen1,Wang Ya-nan2,Zhong Mei-ling2,Liang Mei-rong2

Affiliation:

1. Affiliated Children’s Hospital of Medical College of Zhejiang University

2. Jiangxi Maternal and Child Health Care Hospital

Abstract

Abstract Background Chemotherapy resistance is a leading cause of treatment failure in cases of cervical adenocarcinoma (ADC), and no effective treatment approach has yet been found. We previously identified the differentially expressed kynureninase (KYNU) mRNA in cervical adenocarcinoma cells (HeLa) and cervical adenocarcinoma cisplatin resistance cells (HeLa/DDP) using gene chips. However, the role and potential mechanism of KYNU in the cisplatin resistance of cervical adenocarcinoma remain unclear. Methods We verified the expression of KYNU in the cells and tissues of ADC patients and analyzed its correlation with patient prognosis. A stable HeLa/DDP cell line with KYNU mRNA knockdown was constructed. We then used a CCK8 assay to detect cell survival, a transwell assay to evaluate cell migration and proliferation and flow cytometry to measure apoptosis. The effect of KYNU silence on cisplatin sensitivity was evaluated in an orthotopic model of metastatic ADC. Immunohistochemistry was performed to determine the changes in relevant drug resistance-associated protein expression, aiming to explore the underlying mechanism of KYNU-mediated drug resistance. Results KYNU is overexpressed in HeLa/DDP cells and tissues and is associated with the poor prognoses of patients with ADC. After KYNU mRNA knockdown, the invasion, migration, and proliferation of HeLa/DDP cells in the cisplatin environment significantly reduced, while the apoptosis rate of HeLa/DDP cells significantly increased. Meanwhile, KYNU knockdown improved the DDP sensitivity of ADC in vivo. Furthermore, silencing KYNU decreased the expressions of CD34 and the drug-resistance related proteins P-gp, MRP1, and GST-π and increased the level of the proapoptotic regulatory protein Bax. Conclusion KYNU deficiency enhanced DDP sensitivity by suppressing cell proliferation, migration, and invasion and promoting apoptosis in DDP-resistant ADC cells in vitro. Furthermore, KYNU knockdown improved the drug sensitivity of ADC in vivo. The results showed that KYNU is involved in the chemotherapy resistance of cervical adenocarcinoma.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3