Neuroprotective effects of ferrostatin and necrostatin against entorhinal amyloidopathy- induced electrophysiological alterations mediated by voltage-gated Ca 2+ channels in the dentate gyrus granular cells

Author:

Naderi Soudabeh1,Motamedi Fereshteh1,Pourbadie Hamid Gholami2,Rafiei Shahrbanoo1,Khodagholi Fariba1,Naderi Nima1,Janahmadi Mahyar1

Affiliation:

1. Shahid Beheshti University of Medical Sciences

2. Pasteur Institute of Iran

Abstract

Abstract Alzheimer’s disease (AD) is a progressive neurodegenerative disease that is the main form of dementia. Abnormal deposition of amyloid-beta (Aβ) peptides in neurons and synapses cause neuronal loss and cognitive deficits. We have previously reported that ferroptosis and necroptosis were implicated in Aβ25−35 neurotoxicity, and their specific inhibitors had attenuating effects on cognitive impairment induced by Aβ25−35 neurotoxicity. Here, we aimed to examine the impact of ferroptosis and necroptosis inhibition following the Aβ25−35 neurotoxicity on the neuronal excitability of dentate gyrus (DG) and the possible involvement of voltage-gated Ca2+ channels in their effects. After inducing Aβ25−35 neurotoxicity, electrophysiological alterations in the intrinsic properties and excitability were recorded by the whole-cell patch-clamp under current-clamp condition. Voltage-clamp recordings were also performed to shed light on the involvement of calcium channel currents. Aβ25−35 neurotoxicity induced a considerable reduction in input resistance (Rin), accompanied by a profoundly decreased excitability and a reduction in the amplitude of voltage-gated calcium channel currents in the DG granule cells. However, three days of administration of either ferrostatin-1 (Fer-1), a ferroptosis inhibitor, or Necrostatin-1 (Nec-1), a necroptosis inhibitor, in the entorhinal cortex could almost preserve the normal excitability and the Ca2+ currents. In conclusion, these findings suggest that ferroptosis and necroptosis involvement in EC amyloidopathy could be a potential candidate to prevent the suppressive effect of Aβ on the Ca2+ channel current and neuronal function, which might take place in neurons during the early stages of AD.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3