Dye adsorption performance of nanocellulose beads with different carboxyl group content

Author:

Xue Jianghua1,Zhu Enwen1,Zhu Hengfeng1,Liu Dongning1,Shi Zhuqun2,Xiong Chuanxi1,Yang Quanling3

Affiliation:

1. School of Materials Science and Engineering, Wuhan University of Technology

2. School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology

3. Hainan Institute, Wuhan University of Technology

Abstract

Abstract The problems caused by water pollution are increasingly serious, wastewater contains a lot of heavy metal ions, textile dyes, medicines, etc. However, most adsorption materials usually face problems such as inefficient recycling, high cost, and secondary pollution. As a natural polymer, cellulose has low cost, degradability and good biocompatibility. In this work, by changing the addition amount of sodium hypochlorite during 2,2,6,6-Tetramethylpiperidine-1-oxyl radical (TEMPO) oxidation, nanocellulose with different carboxyl content could be prepared, which is expected to be a good high-efficiency cationic adsorbent due to its rich in hydroxyl groups on the surface and negatively charged. Then the calcium chloride solution was used as the cross-linking agent to prepare nanocellulose beads (TOCNB) by the dropping solidification method. As the content of carboxyl groups increases, the Zeta potential value of the nanocellulose dispersion became increasingly negative. The nanocellulose beads all presented a good three-dimensional network porous structure. With the increase of carboxyl group content, the specific surface area increases from 173 m2 g− 1 to 367 m2 g− 1, and the adsorption capacity for methylene blue (MB) also gradually strengthened. The saturated adsorption capacity of TOCNB on MB was calculated as high as 925.93 mg g− 1. The nano cellulose bead was a cationic adsorbent with highly efficient adsorption and adjustable specific surface area, and the preparation method was simple, fast, efficient and green.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3