M2 Microglia-derived Exosomes promote spinal cord injury recovery in mice by alleviating A1 astrocyte activation

Author:

Zhang Jing1,Hu Die2,Li Liping3,Qu Di1,Shi Weipeng1,Xie Lei4,Jiang Qi1,Li Haifeng1,Yu Tengbo4,Qi Chao1,Fu Haitao1

Affiliation:

1. The Affiliated Hospital of Qingdao University

2. Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University

3. Qingdao Central Hospital

4. University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital)

Abstract

Abstract M2 microglia transplantation has previously demonstrated beneficial effects on spinal cord injury (SCI) by regulating neuroinflammation and enhancing neuronal survival. Exosomes (EXOs), secreted by almost all cell types, embody partial functions and properties of their parent cells. However, the effect of M2 microglia-derived EXOs (M2-EXOs) on SCI recovery and the underlying molecular mechanisms remain unclear. In this study, we isolated M2-EXOs and intravenously introduced them into mice with SCI. Considering the reciprocal communication between microglia and astroglia in both healthy and injured central nervous systems (CNSs), we subsequently focused on the influence of M2-EXOs on astrocyte phenotype regulation. Our findings indicated that M2-EXOs promoted neuron survival and axon preservation, reduced the lesion area, inhibited A1 astrocyte activation, and improved motor function recovery in SCI mice. Moreover, they inhibited the nuclear translocation of p65 and the activation of the NF-κB signalling pathway in A1 astrocytes. Therefore, our research suggests that M2-EXOs mitigate the activation of neurotoxic A1 astrocytes by inhibiting the NF-κB signalling pathway, thereby improving spinal tissue preservation and motor function recovery following SCI. This positions M2-EXOs as a promising therapeutic strategy for SCI.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3