Automatic Identification Method of Bridge Structure Damage Area Based on Digital Image

Author:

WANG Jinchao1,LIU Houcheng1,HAN Zengqiang1,WANG Yiteng1

Affiliation:

1. Institute of Rock and Soil Mechanics

Abstract

Abstract It is of great scientific and practical value to use effective technical means to monitor and warn the structural damage of bridges in real time and for a long time. In order to solve the shortcomings of automatic identification and parameter acquisition of bridge structure digital images, this paper proposes an automatic identification method of bridge structure damage area based on digital images, which effectively realizes the contour carving and quantitative characterization of bridge structure damage area. Firstly, the digital image features of the bridge structure damage area are defined. By making full use of the feature that the pixel value of the damaged area is obviously different from that of the surrounding image, an image pre-processing method of the structure damaged area that can effectively improve the quality of the field shot image is proposed. Then, an improved Ostu method is proposed to organically fuse the global and local threshold features of the image to achieve the damaged area contour carving of the bridge structure surface image. The scale of damage area, the proportion of damage area and the calculation rule of damage area orientation are constructed, and the key inspection and characteristic parameter diagnosis of bridge structure damage area are realized. Finally, the test and analysis are carried out in combination with an actual project case. The results show that the method proposed in this paper is feasible and stable, which can improve the damage area measurement accuracy of the current bridge structure. The method can provide more data support for the detection and maintenance of the bridge structure.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3