Mannosylated-Serum Albumin Nanoparticle Imaging to Monitor Tumor-Associated Macrophages under Anti- PD1 Treatment

Author:

Gu Gyo Jeong1,Chung Hyewon1,Park Ji Yong2,Yoo Ran ji2,Im Hyung Jun3,Choi Hongyoon2,Lee Yun-Sang2,Seok Seung Hyeok1

Affiliation:

1. Macrophage Lab, Department of Microbiology and Immunology, Institute of Endemic Disease, Seoul National University College of Medicine

2. Department of Nuclear Medicine, Seoul National University College of Medicine

3. Graduate School of Convergence Science and Technology, Seoul National University

Abstract

Abstract Background Immune checkpoint inhibitors such as anti-programmed cell death protein 1 (PD1) block tumor growth by reinvigorating the immune system; however, determining their efficacy only by the changes in tumor size may prove inaccurate. As the immune cells including macrophages in the tumor microenvironment (TME) are associated with the response to anti-PD1 therapy, tumor-associated macrophages (TAMs) imaging using nanoparticles can noninvasively provide the immune enrichment status of TME. Herein, the mannosylated-serum albumin (MSA) nanoparticle was labeled with radioactive isotope 68Ga to target the mannose receptors on macrophages for noninvasive monitoring of the TME according to anti-PD1 therapy. Results B16F10 tumor-bearing mice were treated with anti-PD1, and the response to anti-PD1 was determined by the tumor volume. According to the flow cytometry, the responders to anti-PD1 showed an increased proportion of TAMs, as well as lymphocytes, and the most enriched immune cell population in the TME was also TAMs. For noninvasive imaging of TAMs as a surrogate of immune cell augmentation in the TME via anti-PD1, we acquired [68Ga]Ga-MSA positron emission tomography. According to the imaging study, an increased number of TAMs in responders at the early phase of anti-PD1 treatment was observed in both B16F10 and MC38 tumor-bearing mice models. Conclusion As representative immune cells in the TME, non-invasive imaging of TAMs using MSA nanoparticles can reflect the immune cell enrichment status in the TME closely associated with the response to anti-PD1. As non-invasive imaging using MSA nanoparticles, this approach shows a potential to monitor and evaluate anti-tumor response to immune checkpoint inhibitors.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3